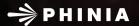
→ PHINIA

WORLDWIDE EMISSIONS STANDARDS FOR LIGHT-DUTY VEHICLES


- · PASSENGER CARS
- · LIGHT TRUCKS
- · LIGHT COMMERCIAL VEHICLES
- · L-CATEGORY

2025/2026

PHINIA.COM

ADVANCING SUSTAINABILITY TODAY, POWERING A CLEANER TOMORROW

INTRODUCTION

This booklet is a pocket-sized summary of the ever-changing worldwide emissions standards for light-duty vehicles including passenger cars and other classes. The booklet covers standards on pollutant emissions (oxides of nitrogen, hydrocarbons, carbon monoxide, particulate matter and others) for all engine types for light-duty vehicle categories. Additionally, it covers fuel consumption, greenhouse gas emissions (especially CO₂) and zero-emission vehicle standards for on-road vehicles and engines.

Emissions standards are composed of limit values, standard test cycles, testing conditions and references to the relevant fuel standards.

Complementing the emission standards, the booklet also provides an overview of on-board diagnostics and monitoring of emissions, and standards for reference fuels.

DISCLAIMER

The information provided in this guide on global emissions standards is sourced from publicly available data and reputable sources. While diligent efforts have been made to ensure accuracy, the constantly evolving nature of regulations may result in occasional discrepancies or outdated information. Readers are advised to verify the current regulations and standards with official government agencies, legal counsel and/or other relevant authorities or advisors before making decisions or taking action based on the information presented herein. This guide is intended for informational purposes only and should not be construed as legal or professional advice. The publishers of this guide are not liable for any errors, omissions, or consequences arising from or relating to the use of this information and undertake no obligation to publicly update this guide, whether as a result of new information, future events or otherwise.

CONTENTS

EXHAUST POLLUTANT EMISSIONS STANDARDS

Roadmap	9
European Union	10
- Annex: test cycles	33
US / California	36
- Annex: test cycles	52
China	56
- Annex: test cycles and former standards	62
India	64
- Annex: test cycles and former standards	70
Japan	72
- Annex: test cycles and former standards	75
South Korea	76 79
Brazil	/9 81
- Annex: test cycles and former standards Other greas of the world	83
Other areas of the World	83

CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

European Union	81
US / California	94
China	102
India Japan	109
South Korea Brazil	112
United Kingdom	11.
Other areas of the world	118

ON-BOARD DIAGNOSTIC AND MONITORING

European Union	12
US / California	128
China	152
India	156
Japan	158
South Korea	160
Brazil	163

EVAPORATIVE EMISSIONS STANDARDS

EVAL STATIVE EMISSISTS STATISFALL	
European Union	169
- Annex: test cycles and former standards	17
US / California	172
- Annex: test cycles and former standards	176
China	177
India	178
Japan	179
South Korea	180
Brazil	180

ELIELO

uropean Union	183
S / California	191
hina	194
ndia	198
apan	200

L-CATEGORY EMISSIONS STANDARDS

	European Union - Annex: test cycles and former standards US / California China - Annex: test cycles and former standards India Japan South Korea Brazil Other areas of the world	204 207 213 214 216 217 219 220 221 222
--	--	--

CONTACT

GLOSSARY

ABT	Banking and Trading
ACC	Advanced Clean Car
AECD	Auxiliary Emission Control Device
AER	All Electric Range
AES	Auxilliary Emission Strategy
ATCT	Ambient Temperature Correction Test
BAB	BundesAutoBahn
BES	Base Emission Strategy
BEV	Battery Electric Vehicles
BS	Bharat Stage
BV	Bed Volume
CAFC	Corporate Average Fuel Consumption
CAFE	Corporate Average Fuel Economy (US)
CF	Conformity Factor
CI	Compression Ignition
СМ	Curb Mass
CN	China
CNG	Compressed Natural Gas

COP	Conformity of Production
DF	Deterioration Factor
DI	Direct Injection
DOC	Diesel Oxidation Catalyst
DPF	Diesel Particle Filter
EEC	Electric Energy Consumption
EEEDWS	Exceed Exhaust Emissions Driver Warning System
EGR	Exhaust Gas Recirculation
EI-AECD	Emission Increase AECD
EOBD	European Union On-board Diagnostic
EUDC	Extra Urban Driving Cycle
EVAP	Evaporative Emissions
FAME	Fatty Acid Methyl Esters
FC	Fuel Consumption
FCEV	Fuel Cell Electric Vehicle
FCV	Fuel Cell Vehicle
FCVH	Fuel Cell Vehicle - Hydrogen
FE	Fuel Economy

FIE	Fuel Injection Equipment
FTP	Federal Test Procedure
GDI	Gasoline Direct Injection
GHG	Greenhouse Gas
GTR	Global Technical Regulation
GVW	Gross Vehicle Weight
GVWR	Gross Vehicle Weight Rating
H₂ICE	Hydrogen Internal Combustion Engine
HDV	Heavy-Duty Vehicle
HEV	Hybrid Electric Vehicle (w/o plug)
HLDT	Heavy Light-Duty Truck
HWFET	Highway Fuel Economy Test
ICE	Internal Combustion Engine
ICEV	Internal Combustion Engine Vehicle
ISC	In-Service Conformity
ISV	In-Service Verification
IUPR	In-Use Performance Ratio
IUPRM	Monitoring of IUPR

GLOSSARY

LBS	Pounds (1 lb = 454 g)
LCV	Light Commercial Vehicle
LDT	Light-Duty Trucks
LEV	Low Emission Vehicle
LLDT	Light Light-Duty Trucks
LPG	Liquefied Petroleum Gas
LVW	Loaded Vehicle Weight
MaS	Market Surveillance
MDPV	Medium-Duty Passenger Vehicle
MIDC	Modified Indian Driving Cycle
MIL	Malfunction Indication Lamp
MTBE	Methyl Tertiary Butyl Ether
MVEG	Motor Vehicle Emissions Group
MY	Model Year
NEDC	New European Driving Cycle
NEV	New Energy Vehicle (China)
NEV	New Electric Vehicle

NIRCO	Non-Integrated Refueling Canister Only
NMHC	Non-Methane Hydrocarbons
NMOG	Non-Methane Organic Gases
NOVC	Normally Open Vapor Canister
NOVC- HEV	Non-Off-Vehicle Charging Hybrid Electric Vehicle
NT	New Types
NTE	Not To Exceed
NV	All New Vehicles
NYCC	New York City Cycle
OBD	On-board Diagnostic
OBDBr	OBD in Brazil
OBFCM	On-Board Fuel Consumption Monitoring
ОВМ	On-Board Monitoring
OEM	Original Equipment Manufacturer
ORVO	Open Refueling Vapor Outlet
ORVR	On-board Refueling Vapor Recovery
OVC	Off-Vehicle Charging

OVC-HEV	Off-Vehicle Charging Hybrid Electric Vehicle
PC	Passenger Car
PEMS	Portable Emission Measurement System
PEV	Pure Electric Vehicle
PF	Permeability Factor
PHEV	Plug-in Hybrid Electric Vehicle
PI	Positive Ignition
PM/PN	Particulate Mass/Number
PMR	Power to Mass Ratio
PZEV	Partial Zero Emissions Vehicle
RDE	Real Driving Emissions
REESS	Rechargeable Energy Storage Systems
RM	Reference Mass
RPA	Relative Positive Acceleration
RVP	Reid Vapor Pressure
SAFE	Safer Affordable Fuel-Efficient Vehicles Rule

GLOSSARY

SFTP	Supplemental Federal Test Procedure
SHED	Sealed Housing Emissions Device
SI	Spark Ignition
SRC	Standard Road Cycle
SULEV	Super Ultra Low Emissions Vehicle
TA	Type Approval
TFL	Transport For London
THC	Total Hydrocarbons
тм	Test Mass
TZEV	Transitional ZEV = PHEV
UDDS	Urban Dynamometer Driving Schedule
UF	Utility Factor
ULEV	Ultra Low Emission Vehicle
VETS	Vehicle Emissions Trading Scheme
VGT	Variable Geometry Turbocharger

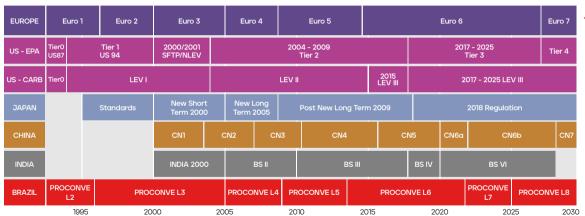
VL	Vehicle Low
VM	Vehicle Makers
VT SHED	Variable Temperature SHED
VVT	Variable Valve Train
wc	Working Cycle
wG	Waste Gate
WLTC	Worldwide Light-duty Test Cycle
WLTP	Worldwide Light-duty Test Procedure
WMTC	World Motorcycle Test Cycle
ZLEV	Zero and Low Emission Vehicle (EU)

Administrations and associations

ABNT NBR	Associação Brasileira de Normas Técnicas - Norma Brasileira
ACEA	European Automobile Manufacturer Association
BEE	Bureau of Energy Efficiency (India)

CARB	California Air Resources Board
ECE	Economic Commission for Europe
EPA	US Environmental Protection Agency
EU	European Union
MVEG	Motor Vehicle Emissions Group, Advisory
JRC	Joint Research Centre
UNECE	United Nations Economic Commission for Europe
AISC	Automotive Industry Standard Committee
SCOE	Standing Committee on Emissions
NCR	National Capital Region
EISA	Energy Independence and Security Act
NHTSA	National Highway Traffic Safety Administration
IBAMA	Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis
CONAMA	Conselho Nacional do Meio Ambiente

EXHAUST
POLLUTANT
EMISSIONS
STANDARDS


EXHAUST POLLUTANT EMISSIONS STANDARDS CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV ON-BOARD DIAGNOSTIC AND MONITORING

EVAPORATIVE EMISSIONS STANDARDS

FUELS

L-CATEGORY EMISSIONS STANDARDS

TIMELINE - TOXIC EMISSIONS STANDARDS PASSENGER CARS

Dates show earliest type approval introduction only. More detail can be found in the booklet.

EXHAUST POLLUTANT EMISSIONS STANDARDS

CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV ON-BOARD
DIAGNOSTIC AND
MONITORING

EMISSIONS STANDARDS

FUELS

EMISSIONS STANDARDS

9

EUROPEAN UNION - OVERVIEW

Vehicle categories

Vehicle categories were defined in 1970 by Directive 70/156/EC, as amended by Directive 2007/46/EC. It was repealed and replaced by (EU) 2018 / 858 (Article 4) with no changes.

Category	Description	Subcategory	Number of persons		Mass limit		
		M,ª	Up to 9	GVW ≤ 3,500 kg ^b			
M	Carriage of passengers, min. 4 wheels	M ₂ °	> 9	GVW ≤ 5,000 kg			
		M ₃ d	> 9	GVW > 5,000 kg			
		N ₁ Class 1°			RM ≤ 1,305 kg		
	Carriage of goods,	N, Class 2°		GVW ≤ 3,500 kg	1,305 kg < RM ≤ 1,760 kg		
N	min. 4 wheels,	N, Class 3°	N/A	_ 0,000 mg	1.,760 kg < RM ≤ 3,500 kg		
	LCV & HDV	N ₂ °		3,500 kg < GVW ≤ 12,000 kg			
		N ₃ d		GVW > 12,000 kg			

Bold text denotes categories normally subject to LDV regulation.

- ^a Passenger car (PC); under certain conditions and regulations, could be subject to the HDV standard.
- b Until Euro 4: Two subgroups: M₁ with GVW ≤ 2.500 kg and M₁ with 2.500 kg < GVW ≤ 3.500 kg.
- Normally subject to HDV standard, but at the request of the manufacturers and under specific conditions (depending on Regulation), could be subject to LDV standard.
- d Subject only to HDV standard.
- "Light commercial vehicle (LCV); defined in (EU) 715 / 2007 (Annex I), "Class" also denoted as "CL" in the following pages,

EUROPEAN UNION - OVERVIEW

Type approval emissions testing

In the current EU Regulation, up to 7 types of Emissions tests could be required for a complete Emission Type approval process. The objective is to cover all the conditions where emissions (tailpipe and non-tailpipe) could appear. Often, when speaking about emissions regulations, type 1 and 1A are the reference

Test	Description	Scope	Requirement	Chapter / Page
Type 1	Tailpipe emissions	All	Measurement of Tailpipe Emissions / CO ₂ on dyno' testing over the WLTP cycle, including ATCT procedure	From page 17, 23 & 34
Type 1A	Real Driving Emissions	All	Measurement of on-road emissions using PEMS	From page 24 to page 30
Type 2	CO emissions at engine idling speeds	PI	Determination of reference value for inspection / maintenance and COP	Not covered here
Type 3	Crankcase gases emissions	PI	Verify the good behavior of the ventilation system to avoid any unburned gases into the atmosphere	Not covered here
Type 4	Evaporative Emissions	PI	Limit the fuel vapor emitted during parking conditions	Page 169 & 171
Type 5	Durability of pollution control devices	All	Check of the durability of pollution control devices / determination of Deterioration Factor (DF)	Page 20 & 21
Type 6	Low Temperature emissions	PI / (CI)	Verify the emissions at cold conditions (-7°C)	Page 22

			Introduction	Legislative	Test		Emissi	ons lim	nits (g/km) lab	oratory	cycle PI / CI		Durability
	Vehicle cla	ISS	date NT	reference	cycle	со	NMHC	нс	HC + NOx	NOx	РМ	PN x 10 ¹¹ -/ km	(km)
	M₁ with GV ≤ 2,500 kg		Jan 1992	91/441/EEC or 93/59/EEC		2.72 (3.16)°		0.97 (1.13)°		- / 0.14 (0.18)º			
Euro 1	M₁ with GVW > 2,500 kg & N₁ CL 1 ^b				Urban (40 sec. idle)	2.72 (0.10)	-	-	0.97 (1.13)	-	- 7 0.14 (0.18)	-	80,000 or 5 years
	N ₁	CL 2 ^b	Oct 1993	93/59/EEC	+ EUDC	5.17 (6)°			1.4 (1.6) ^a		- / 0.19 (0.22)°		3 years
		CL 3b				6.9 (8) ^a			1.7 (2) ^a		- / 0.25 (0.29)ª		
	M₁ with GVW ≤ 2,500 kg		Jan 1996	94/12/EC or 96/69/EC	NEDC (Revised Urban + EUDC)	2.2 / 1.0			0.5 / 0.7		- / 0.08	-	
Euro 2	M ₁ with GVW > 2,500 kg & N ₁ CL 1 ^b		Oct 1996	94/12/EC	Urban		-	-		-			80,000 or 5 years
	N ₁	CL 2 ^b	Oct 1997	or 96/69/EC, 93/116/EC	(40 sec. idle) +	4 / 1.25			0.6 / 1.0 (1.3)°		- / 0.12 (1.4)ª		
		CL 3 ^b	Oct 1998	23	EUDC	5 / 1.5			0.7 / 1.2 (1.6)°		/ 0.17 (0.20) ^a		

a Conformity of production (COP) values in brackets.

EXHAUST POLLUTANT EMISSIONS STANDARDS

b Vehicle classes: Class 1: GVW ≤ 1250 kg, Class 2: 1250 kg < GVW ≤ 1700 kg, Class 3: GVW > 1700 kg.

			Introduction	Lagiolativa	Legislative Test		Emissions limits (g/km) laboratory cycle PI / CI						
	Vehicle cla	ISS	date NT	reference	cycle	со	NMHC	нс	HC + NOx	NOx	PM	PN x 10 ¹¹ - / km	Durability (km)
Euro 3	M ₁ d & N ₁ CL 1		Jan 2000	70/220/EC,	NEDC	2.30 / 0.64		0.20 / -	- / 0.56	0.15 / 0.50	- / 0.05		
	N ₁ °	CL 2	Jan 2001	Amended by 98/69/EC & 2002/80/EC	(Revised Urban + EUDC)	4.17 / 0.80	-	0.25 / -	- / 0.72	0.18 / 0.65	- / 0.07	-	80,000 or 5 years
		CL 3				5.22 / 0.95		0.29 / -	- / 0.86	0.21 / 0.78	- / 0.10		
	M ₁ d & N ₁ CL	. 1	Jan 2005	70/220/EC,	NEDC	1.00 / 0.50		0.10 / -	- / 0.30	0.08 / 0.25	- / 0.025		
Euro 4	Ne	CL 2		Amended by 98/69/EC &	(Revised Urban +	1.81 / 0.63	-	0.13 / -	- / 0.39	0.10 / 0.33	- / 0.040	-	100,000 or 5 vegres
	N ₁ e	CL 3	- Jan 2006	2003/76/EC		2.27 / 0.74		0.16 / -	- / 0.46	0.11 / 0.39	- / 0.060		5 years°

^o Required recording of in-use durability.

d Excluding passenger cars with GVW > 2.500 kg.

e Plus passenger cars with GVW > 2.500 kg.

		Introduction	Legislative	Test			Durability					
	Vehicle class	date NT	reference	cycle	со	NMHC	нс	HC + NOx	NOx	PM	PN x 10 ¹¹ - / km	(km)
	M ₁ & N ₁ CL 1	Sep 2009	- (EC) 715/2007, amended by (EC) 692/2008 (EU) 2017/1151	NEDC	1.00 / 0.50	0.068 /-	0.10 / -	- / 0.230	0.060 / 0.180			100,000 or 5 years
Euro 5	N ₁ CL 2	Sep 2010			1.81 / 0.63	0.090	0.13 / -	- / 0.295	0.075 / 0.235	0.0045 ^{e,h}	- / 6 ⁱ	
	N ₁ CL 3	Sep 2010			2.27 / 0.74	0.108 /-	0.16 / -	- / 0.350	0.082 / 0.280			
	M ₁ & N ₁ CL 1	From Sep 2014	(EC) 715/2007, amended by	amended by (EC) 692/2008 (EU) 2017/1151 amended by (FLI)	1.00 / 0.50	0.068	0.10 / -	- / 0.170	0.060 / 0.080			
Euro 6 ^g	N₁ CL 2	From Sep	(EU) 2017/1151		1.81 / 0.63	0.090	0.13 / -	- / 0.295	0.075 / 0.105	0.0045°	6 ^{e,f}	100,000) or 5 years
	N ₁ CL 3	2015			2.27 / 0.74	0.108 /-	0.16 / -	- / 0.350	0.082 / 0.125			o yours

^e Applicable to PI Direct Injection engines only.

EXHAUST POLLUTANT EMISSIONS **STANDARDS**

Until 3 years after the dates for TA/FR particle emission limit of 6 x 1012 may be applied for Euro 6b positive ignition DI vehicles upon request of manufacturer. g Euro 6 steps detailed are given in the Euro 6 section.

h This value applies only starting Jan 2012 with Euro 5b application - From Jan 2010 to Jan 2012, PM = 0.005 (Euro 5a).

This value is applicable only starting Jan 2012 with Euro 5b application.

Market Surveillance tests could be made over 160,000 km.

		Legislative	Test	Emissions limits (g/km) laboratory cycle PI / CI							Durability	
	Vehicle class	Introduction date NT	reference	cycle	со	NMHC	нс	HC + NOx	NOx	PM	PN x 10 ¹¹ - / km	
Euro 7	M ₁ & N ₁ CL 1	Nov 2026		WLTC	1.00 / 0.50	0.068	0.10 / -	- / 0.170	0.060 / 0.080		6	200,000 or 10 years ^k
(limits identical	N ₁ CL 2		(EU) 2024/1257		1.81 / 0.63	0.090	0.13 / -	- / 0.295	0.075 / 0.105	0.0045		
to Euro 6)	N ₁ CL 3				2.27 / 0.74	0.108 /-	0.16 / -	- / 0.350	0.082 / 0.125			

k Main Lifetime up to 160,000 km or 8 years - beyond that, a durability multiplier (1.2) is used for gaseous pollutants.

Euro 6 was implemented in several steps:

24.0 0 1140	and an obtain steps.				
			Vehicle	e class	
	Description			N ₁ CL2, 3 N ₂	
		Euro 6-1 Sep 2014 Sep 2015 Sep 201 r PI vehicles + OBD Euro 6-2 + lab test cycle + RDE PN (NTE romonitoring only informity Factors Sep 2017 Sep 2019 Sep 201	NT [□]	NV	
Euro 6b	MVEG process with new limits + OBD Euro 6-1	Sep 2014	Sep 2015	Sep 2015	Sep 2016
Euro 6c	Euro 6b + WLTP (cycle & procedure) + final PN standard for PI vehicles + OBD Euro 6-2 + use of E10 and B7 reference fuel, assessed on regulatory lab test cycle + RDE PN (NTE emission limits applied) + RDE NOx testing for monitoring only	Sep 2017	Sep 2018	Sep 2018	Sep 2019
Euro 6d-TEMP	Euro 6c + RDE testing against temporary Conformity Factors	Sep 2017	Sep 2019	Sep 2018	Sep 2019
Euro 6d-TEMP-ISC	Euro 6d-TEMP + new ISC procedure (incl. RDE, type 4, type 6 tests)	Jan 2019			
Euro 6d-TEMP- EVAP-ISC	Euro 6d-TEMP-ISC + 48h evaporative test procedure	Sep 2019	Sep 2019	Sep 2019	Sep 2020
Euro 6d-ISC-FCM	Euro 6d-TEMP-EVAP-ISC + onboard fuel and/or electric energy consumption monitoring device + RDE testing against Final Conformity Factors	Jan 2020	Jan 2021	Jan 2021	Jan 2022
Euro 6e	Euro 6d-ISC-FCM + RDE compliance considering updated PEMS margins, OBFCM for № vehicles	Sep 2023	Sep 2024	Sep 2023	Sep 2024
Euro 6e-bis	Euro 6e + increased extended ambient conditions for RDE compliance + AES Flag + updated utility factor (equivalent to UNR168)	Jan 2025	Jan 2026	Jan 2025	Jan 2026

ONT = new types (newly introduced vehicle models).
 NV = all vehicles, also known as AT (all types = all new vehicles).

EXHAUST POLLUTANT EMISSIONS STANDARDS

Vehicle scope (Euro 5 & 6)

 M_1 and M_2 , N_1 and N_2 vehicles as defined in Directive 70/156/EC with reference mass $\leq 2,610$ kg.

Extension possible at the manufacturer's request to M_1 , M_2 , N_1 and N_2 with reference mass $\leq 2,840$ kg.

Test cycles

NEDC was used in the first phase of Euro 6 (Euro 6b), and then replaced by WLTC.

The Real Driving Emission (RDE) test procedure was introduced in 3 phases.

- · First a monitoring period starting in April 2016 on new type vehicles
- Followed by a period with application of temporary conformity factors (Euro 6d-TEMP)
- \cdot Then with application of final conformity factors (Euro 6d)

See EUROPEAN UNION – REAL DRIVING EMISSIONS section for more details on the RDE test procedure.

Conformity of Production (COP)

The conformity of production procedure gims to ensure that each vehicle, system, component and technical separate unit, part or equipment produced is in conformity with the approved type.

Emission tests are made at the end of the vehicle production (-0 km) to check the Conformity of Production: Type 1 (only WLTC) and on-board fuel consumption monitoring (OBFCM) accuracy check.

A statistical approach is generally made.

In-Service Conformity (ISC) - Euro 5 & 6

Testing is performed at min. 6 months and 15,000 km, max, 100,000 km or 5 years whichever is sooner.

ISC is applied on Type 1 WLTP and RDE. Type 4 and Type 6 tests.

ISC is open to testing by National Type Approval Authorities and Third Parties

A statistical approach is generally made.

Market Surveillance (MaS)

MaS (Market Surveillance) was introduced in 2020 after the so-called 'Dieselaate' scandal.

The objective is to check emissions compliance within and outside the regulated conditions. All certification values can be tested during MaS.

Tests are conducted either by European Commission's Joint Research Centre (JRC) or by National Type Approval Authorities and can be made on non-regulated cycles such as BAB130 (German highway). TFL (London Urban Inter Peak) or Artemis (based on a European research project).

Vehicles are selected according to the risk assessment principles: severity and likelihood of non-compliance; new technology; past history; results of remote sensing testing; concerns reported by recognized third parties.

A vearly report is available on JRC website.

Defeat devices, AES / BES documentation and flags

Defeat devices that reduce the effectiveness of emission control systems shall be prohibited with some exceptions mainly linked to safety, engine start or if the conditions are substantially included in the test procedures.

This prohibition needs to be considered together with the rules laid down in Commission Regulation (EU) 2017/1757 regarding Auxiliary Emission Strategies (see below).

Starting with Euro 6d-temp, the manufacturer shall provide an extended documentation package where emissions strategies are described:

- Base Emissions Strategies (BES) the emission strategy active throughout the standard speed and load operating range of the vehicle unless an auxiliary emission strategy is activated
- Auxiliary emission strategy (AES) an emission strategy that becomes active and replaces or modifies a BES in response to a specific set of ambient or operating conditions and only remains operational as long as those conditions exist

For each AFS, a clear justification of the use and an explanation of its impact on pollutants and CO2 need to be given.

Starting with Euro 6e-bis, the manufacturer shall introduce an indicator (AES Flag or Timer) to indicate when a vehicle runs in AES mode. The indicator shall be available via the serial port of a standard diagnostic connector upon request of a generic scan-tool. The AES that is running shall be identifiable via the documentation package.

A list of AES which were deemed non-acceptable by type approval authorities shall be compiled yearly.

Durability requirements starting with Euro 6c (Type 5 test)

Deterioration factors are used to determine emissions of an aged system compared to new. They are used during Type-Approval and COP testing.

Starting Euro 6c°, they can be determined only by one of the following methods described in the Annex C4 of the UNR154:

- A whole vehicle ageing test covering its useful life (test track, on the road or on chassis dyno), using the Standard Road Cycle (SRC)
- Where applicable a manufacturer may choose to apply the assigned deterioration factor (multiplicative or additive), but these must later be verified on an aged system

Assigned multiplicative deterioration factors (Euro 5 / Euro 6)

Engine category	со	тнс	NMHC	NO _x	HC + NO _x	РМ	PN				
Positive Ignition	1.5	1.3	1.3	1.6	-	1.0	1.0				
Compression Ignition	com	As there are no assigned deterioration factors for compression ignition vehicles, manufacturers shall use the whole vehicle or bench ageing durability test procedures to establish deterioration factors									

On previous regulations (Euro 5 & Euro 6b), the durability requirements followed UNR 83 process. There, an additional method could be used, called Bench ageing (or rapid ageing) durability test. A cycle (specific for Cl & Pl) is repeated on engine bench in order to simulate exhaust line ageing.

EXHAUST POLLUTANT EMISSIONS STANDARDS

Assigned additive deterioration factors (starting Euro 6c)

	Technically permissible maximum	car	ss of bon oxide (O)	non-r	ass of methane carbons MHC)		of oxid		partic	ss of culate tter M)	Nun	ticle nber N)
laden Mass (GVW) (kg)			-1 /km)	L ₃ (mg/km)		L₄ (mg/km)		L₅ (mg/km)		L ₆ (#/km)		
Category		G	D/O	G	D/O	G	D	0	G°	D/O	G°	D/O
M	All	127		12		11			0		0	
	GVW≤ 1,700b	127	_d	12 _d	11	_d		0	_d	0	_d	
N ₁	1,700 < GVW ≤ 3,500	281		18		15	15	_d	0		0	
	Allc	327	-	9	-	8	-		0	-	0	-

- G Petrol, LPG.
- D Diesel.
 O Other fuel.
- ^a For petrol or LPG, particulate mass (PM) and particle number (PN) limits shall apply only to vehicles with direct injection engines.
- ^b Except vehicles having engine displacement less than or equal to 0.660 liter, vehicle length less than or equal to 3.40 m, vehicle width less than or equal to 1.48 m, and vehicle height less than or equal to 2.00m, seats less than or equal to 3 in addition to a driver, and payload less than or equal to 350 ka.
- ^c Vehicles having engine displacement less or equal to 0.660 liter, vehicle length less than or equal to 3.40 m, vehicle width less than or equal to 1.48 m, and vehicle height less than or equal to 2.00m, seats less than or equal to 3 in addition to a driver, and payload less than or equal to 350 kg.
- d As there are no assigned deterioration factors for compression ignition vehicles, manufacturers shall use the whole vehicle ageing durability test procedures to establish deterioration factors.

Low Temperature Test (-7°C) (Type 6 test)

The Type 6 test is an additional requirement at cold conditions.

The general requirements for the Type 6 test are mainly those set out in section 5.3.5 of UN/ECE Regulation No. 83 with specific limits. Reference cycle is NEDC.

Starting with Euro 6e, this test shall be carried out on all vehicles except those having compression-ignition engines. For previous steps (Euro 6b -> Euro 6d), for CI vehicles, manufacturers shall present information - showing that the NOx aftertreatment devices reach a sufficiently high temperature for efficient operation within 400 sec. after a cold start - on the operating strategy of the EGR system including functioning at low temperatures.

Emission limit of PI vehicles for the CO and THC emissions after cold start:

Vehicle category	CO limit (g/km)	THC limit (g/km)
M, N ₁ , CL 1	15	1.8
N ₃ CL 2	24	2.7
N ₁ CL 3, N ₂	30	3.2

- The test consists of driving four elementary urban cycles, which together make a complete NEDC Part One cycle
- The low ambient temperature test lasting a total of 780 sec. shall be carried out without interruption and start at engine cranking
- The road load coefficients used shall be those for the vehicle with the lowest CO₂ emissions in the family, known as vehicle low (VL)
- The dynamometer shall be adjusted to simulate the operation of a vehicle on the road at -7 °C, with a road load force adaptation
- Before the test is carried out, the test vehicles shall be preconditioned in a uniform manner driving a complete NEDC cycle

FCF - WITP / WITC

The WLTC cycles are part of the Worldwide harmonized Light vehicles Test Procedures (initially GTR15, transposed in UNR154).

- · Introduced in Europe in Sep 2017 for NT and Sep 2018 for NV
- More representative of the real life consumption and emission.
 It was created using real driving data provided by ECE contracting parties, e.g. EU, Japan, India
- · The complete procedure was updated to give:
- More realistic road load and adaptation
- A suitable procedure for PHEV / PEV / HEV
- Gear shift adapted to the vehicle characteristics
- Updates to the PN measurement methodology
- Vehicles are categorised according to their Power Mass Ratio (PMR) and the cycle is adapted. Furthermore if the vehicle is not able to achieve the speed and acceleration profile of the cycle assigned to its class, the cycle can be modified by downgrading the dynamics to allow the test to be completed (downscaling)

ı	PMR category	PMR (W/kg)	Speed phases (see annex)
Class 3	3a (V _{max} < 120 km/h)	PMR > 34	Low ₃ + Medium _{3a} + High _{3a} + Extra High ₃
Class 3	3b (V _{max} ≥ 120 km/h)	PIVIR > 34	Low ₃ + Medium ₃₀ + High ₃₀ + Extra High ₃
Class 2	-	22 < PMR ≤ 34	Low ₂ + Medium ₂ + High ₂ + Extra High ₂
Class 1	-	PMR ≤ 22	Low ₁ + Medium ₁ + Low ₁

Real Driving Emissions (RDE)

RDE is an additional vehicle test performed at type approval in-service conformity and market surveillance, which is conducted with market fuels. NOx, PN, CO & CO2 emissions are measured on public roads in real-life conditions using portable emissions measuring systems (PEMS). CO_o is not regulated but used as reference value for the post-processing.

The current RDE test procedure is described in Annex IIIA of regulation (EU) 2017/1151 amended by (EU) 2018/1832 and applicable since 1 January 2019 (equivalent to UNR168).

Not to Exceed emissions values for RDE testing

The emissions produced during the RDE trip are recorded every second. When a measurement is taken under extended driving conditions, a correction factor is applied to the emissions results (see next page). The results of the RDE emissions for the entire RDE trip and the urban part alone must remain below the 'Not to Exceed' (NTE) emissions limits as defined by the following equation:

CF____ = conformity factor for each pollutant, as presented in the table on the right.

Following a policy change (emission limits can only be changed through co-decision), from Euro 6d onwards, RDE test compliance is calculated as follows:

Final RDE Emission test results / (1 + PEMS margin) ≤ Euro 6e thresholds (see calculation page 30 - Final RDF Emissions test results is including K. factors).

Conformity Factors (CFs) for Euro 6 RDE

CF _{pollutant}	NOx	PN	COa
Temporary (Euro 6d-Temp)	2.10	1 + margin PN = 1.50	-
Final (Euro 6d)	1 + margin NOx = 1.43	1 + margin PN = 1.50	-
Euro 6e	1 + margin NOx = 1.10	1 + margin PN = 1.34	-

[°]CO emissions shall be measured and recorded at RDF tests.

- · "Marain" is a parameter taking into account additional measurement uncertainties of PEMS equipment, and is subject to annual review
- RDE in-service conformity testing is performed at maximum. 100.000 km vehicle life

Boundary conditions of a valid RDE trip

The ambient conditions are 'extended' when the temperature or altitude conditions are in the extended range. If during a particular time interval the ambient conditions are in the extended range, the emission values during this particular time interval are divided by the 1.6 correction factor before being evaluated.

Boundary condition values

Ambient condition	Moderate	Extended		
Emissions correction factor	1	1 / 1.6		
Temperature	0 ≤ T ≤ 35°C	-7 ≤ T < 0°C; 35 < T ≤ 38°C		
Altitude	≤ 700m	700 < Alt ≤ 1,300m		

Trip requirement for a valid RDE test

The RDE trip is designed based on street maps. Air conditioning and other auxiliary devices shall be operated in their typical manner. After the test is completed, the following trip verifications are carried out.

- Ambient boundary conditions shall be respected (see above)
- Trip requirements in term of distance proportions, speeds, altitudes as defined in the table on the next page shall be met
- Driving dynamics criteria are also taken into account. These are explained in the following pages

Trip requirements for a valid RDE test

Driving portion	Urbana	Rural	Motorway			
	Speed ≤ 60 km/h	60 < Speed ≤ 90 km/h⁵	90 km/h ^b < Speed			
Minimum distance	16 km	16 km	16 km			
Distance share	29-44%	23-43%	23-43%			
Total trip duration		90-120 minutes				
Average speed including stops	15 < Avg. < 40 km/h	-	-			
Total stop time (v < 1 km/h)	6 - 30% Urban time	-	-			
Individual stop time	≤ 300 sec.	-	-			
v > 100 km/h ^{b,c}	-	-	> 5 min.			
v > 145 km/h	-	-	< 3% Motorway time			
Cumulative positive elevation gain	< 1,200 m / 100 km					
Start/end test elevation difference	≤ 100 m					

^a Average speed between 15 and 40 km/h including stops and cold start, total stop time 6-30% individual stop time less than 300s.

Furthermore, the test can be done with different mass, but not exceeding 90% of the vehicle's permissible payload.

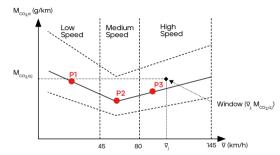
b 80 km/h for N2 vehicle with 90 km/h speed limiting device.

o 90 km/h for M₂ vehicle with speed limiting device at 100 km/h.

Driving dynamics criteria

- · Overall driving dynamics shall be within limits defined in table on the right, to insure against:
 - Excessive driving dynamics using the v.apos (velocity multiplied by positive acceleration) distribution over each portion of the trip (urban, rural and motorway as defined by the trip requirements)
 - Insufficient driving dynamics using the RPA (Relative Positive Acceleration) computed over each portion of the trip (urban. rural and motorway)

	Trip dynamics requirements ^a					
No excess $v \le 74.6 \text{ km/h}$ $v > 74.6 \text{ km/h}$						
95 th percentile (v.a _{pos})	max. (v.a _{pos}) = 0.136 x v + 14.44	max. $(v.a_{pos})$ = 0.0742 x v + 18.966 max. $(v.a_{pos})^b$ = -0.097 x v + 31.635				
Sufficiency	v ≤ 94.05 km/h	v > 94.05 km/h				
Relative Positive Acceleration	min. (RPA) = -0.0016 x v + 0.1755	min. (RPA) = 0.025				


^av in the formulas are in km/h, v.a_{ros} in m²/s³ or W/kg, RPA in m/s² or kWs/(kg.km). b Upon the choice of the manufacturer for N₁ and N₂ vehicles with a power to mass ratio ≤ 44 W/ka.

Vehicle CO₂ characteristic curve

- The objective is to assess the validity of the trip when comparing the CO₂, expressed in g/km, as a proxy for engine load, measured in 'moving average windows' (see right) to the reference CO₂ measured on Type 1 test
- The first step consists of creating the CO₂ characteristic using type 1 test results

Vehicle CO2 characteristic curve

WLTC phases	Low-speed (LS)	Low-speed (LS) High-speed (HS)	
Reference point	P1	P2	P3
Reference point: Speed (km/h)	18.882 km/h	56.664 km/h	91.997 km/h
Reference point: CO ₂ (g/km)	Mass CO _{2 LS-WLTP}	Mass CO _{2 HS-WLTP}	Mass CO _{2 EHS-WLTP}

- \cdot Then, using PEMS 1 Hz data, moving average windows method is used to define windows with CO $_{\!2}$ equal to 1/2 CO $_{\!2}$ mass generated during the entire WLTC
- In each window, vehicle speeds and CO₂ emissions (expressed in g/km) are averaged, and plotted as a point together with the vehicle CO₂ characteristic curve obtained from the WLTP test

Verification of overall trip dynamics

For verification of overall trip dynamics, the trip is divided into urban, rural and motorway parts based on speed as defined in following table.

The number of windows in each driving part is used to compute the percentage of windows within the tolerances defined for the CO₂ characteristic curve. The test is valid if at least 50% of the windows in each part are within the tolerance band.

	Urban	Rural	Motorway		
Windows bins thresholds	Speed < 45 km/h	45 ≤ Speed < 80 km/h°	80° ≤ Speed < 145 km/h		
Tolerances around CO₂ characteristic curve					
Upper tolerance	+ 45% ^b	+ 40% ^b	+ 40% ^b		
Lower tolerance	tolerance - 25% for ICE and NOVC-HEV; - 100% for OVC-HEV				
% of windows within the tolerance band					
RDE test valid if	≥ 50%	≥ 50%	≥ 50%		

a 70 km/h for N₂ vehicle with 90 km/h speed limiting device.

^b For NOVC-HEV and OVC-HEV the upper tolerance may be increased by steps of 1% until 50%

Final RDE data evaluation

Both the urban and total trip emissions of the RDF must pass the NTF emissions limits after correction with the Ki factors or offsets:

The RDE results are calculated by multiplying raw emissions by an RDE evaluation factor RF, for both the urban and the total portions of the RDE trip as defined by the trip requirements (k = urban; k = total respectively).

$$M_{pollutant,RDE,k}$$
 (mg/km) = $\frac{Pollutant\ Mass\ Emitted_{RDE,k}}{Distance\ Driven_{RDE,k}} \times RF_{k}$

RF_k is a function of the distance-specific (a/km) CO₂ ratio r_k between the RDE and the WLTP (k = urban and k = total respectively) as shown in the adjacent graph and table.

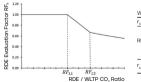
For ICE and NOVC-HEV, r., is computed as:

$$r_k = \frac{M_{CO_{2, RDE, k}}}{M_{CO_{2, WLTP, k}}}$$

EXHAUST

STANDARDS

with M_{COVMITPL} defined in the adjacent table.


For OVC-HEV,
$$r_k$$
 is computed as: $r_k = \frac{M_{CO_2, RDE, k}}{M_{CO_2, WLTP_cS, t}} \times \frac{0.85}{IC_k}$

distance driven with the ICE on in total/urban with ICk being defined as: ICk = total/urban distance

The RDE evaluation factors are subject to review by the European Commission and shall be revised as a result of technical progress.

Relevant phases of WLTP to be used for MCO-MITTER

	k = urban	k = total		
ICE	Low + medium speed	Whole WLTP cycle		
NOVC-HEV	Whole WLTP cycle			
OVC-HEV	Whole WLTP cycle in charge sustaining mode			

Then the result When: evaluation factor RF _k is: Where:					
r _k ≤ RF _{L1}	RF _k =1				
$RF_{L1} < r_k \le RF_{L2}$	RF _k = a _i r _k + b ₁	$a_1 = \frac{RF_{L2} - 1}{[RF_{L2} \times (RF_{L1} - RF_{L2})]}$ $b_1 = 1 - a_1RF_{L1}$			
r _k > RF _{L2}	$RF_k = \frac{1}{r_k}$				

POLITITANT EMISSIONS

Overview

In April 2024, the European Parliament and Council adopted the Regulation (EU) 2024/1257, also called Euro 7.

Scope: M₁ & N₁.

Application dates: New type: 29/11/2026; All new vehicles: 29/11/2027.

Regarding emissions, Euro 7 is close to Euro 6e-bis.

Emissions procedures are equivalent to Euro 6e-bis and are based mainly on UNR154 / UNR168 and UNR 83 08.

The main changes are:

- · OBM for NOx & PM (cf OBD section for more details)
- Anti-Tampering: linked to OBM The manufacturer now has the responsibility to identify when the emission system has been tampered with
- \cdot PN₁₀ for WLTC and RDE (with unchanged limit: 6 x 10¹¹)
- Evaporative Emissions limit reduced from 2.0 g to 1.5 g/test (see EVAP section for details)

- On-board fuel consumption monitoring (OBFCM) will also be applied during ISC (or ISV) tests
- · Environmental vehicle passport required
- Prohibition of Manipulation Devices and Strategies replaces the Euro 6 provision on Defeat Devices. The AES / BES approach is maintained
- · Increase of lifetime:
 - Main lifetime increased to 160,000 km or 8 years, whichever comes first
 - Additional lifetime: after main lifetime and up to 200,000 km or 10 years, whichever comes first - with durability multiplier = 1.2 for gaseous pollutants

New provisions

In addition to standard tailpipe and evaporative emissions, Euro 7 also sets limits for:

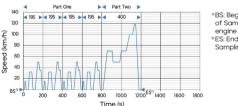
- · Brake particles (limits below are applicable until 2029)
 - New limits should be defined starting 2030 with PN limits added
 - In 2035, the limits for all M_1 & N_1 will be $PM_{10} \le 3$ mg/km/vehicle), following UN GTR 24 limits and procedures

	Brake particle emissions limits in mg/km					
Powertrain technology	Powertrain technology PEV ⁵ OVC- NOVC- FCV/ ICEV					
(PM ₁₀) M ₁ and N ₁ , excluding N ₁ , Class III	3	7	7	7	7	
(PM ₁₀) N ₁ , Class III	5	11	11	11	11	

^a PEV = pure electric vehicle.

 Tyre abrasion – limits are to be defined based on the testing methodologies developed in UN WP.29 for testing tyre abrasion in real world conditions

Battery energy based MPR	Start of life to 5 years or 100,000 km whichever comes first	Vehicles more than 5 years or 100,000 km, and up to whichever comes first of 8 years or 160,000 km
M ₁ : OVC-HEV / PEV	80%	72%
N ₁ : OVC-HEV / PEV	75%	67%

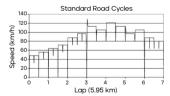


EUROPEAN UNION - DRIVING CYCLES

New European Driving Cycle (NEDC)

Urban (ECE) + Extra-Urban (EUDC) Cycle, Prior to Euro 3 (MVFG-A: FCF+FUDC)

- · Bag sampling starts after the 40 sec. idle period
- Cycle revision for Euro 3 onwards (MVEG-B: NEDC)
- Modification of the start-up phase: deletion of the 40 sec. idle period prior to bag sampling

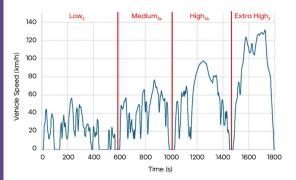

a BS: Beginning of Sampling at enaine start bES: End of Samplina

SRC - On-road durability test

The Standard Road Cycle (SRC) is a distance accumulation cycle on the vehicle.

The vehicle may be run on a test track or on a distance accumulation dynamometer.

The cycle consists of 7 laps of a 6 km course.



A first test is carried out when the vehicle has reached a distance of between 3.000 km and 5.000 km. Further tests are carried out at 20.000 km (+400 km) and then every 20.000 km (+400 km) or more frequently. at regular intervals until having covered the target useful life. Exhaust emissions are measured in accordance with the Type 1 Test.

EUROPEAN UNION - DRIVING CYCLES

WLTC profile showing the example of class 3b

Phase	Duration(s)	Phase	Duration(s)
Low Speed	589	High Speed	455
Medium Speed	433	Extra-High Speed	323

Tot =	1,800 s

Differences	MVEG-B	WLTC class 3b
Duration(s)	1,180	1,800
Length (km)	11.007	23.253
Environmental Temperature (C°)	20-30	23±5
Gear Shift	Fixed	Vehicle Specific
Idle Time (%)	21.8	13.1
V _{max} (km/h)	120	131.3
V _{average} (km/h)	33.6	46.5
Accel _{max} (m/s2)	1	1.67

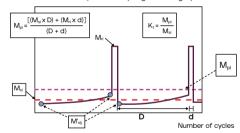
EXHAUST POLLUTANT EMISSIONS STANDARDS

CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV ON-BOARD DIAGNOSTIC AND MONITORING EVAPORATIVE EMISSIONS STANDARDS

EM EM

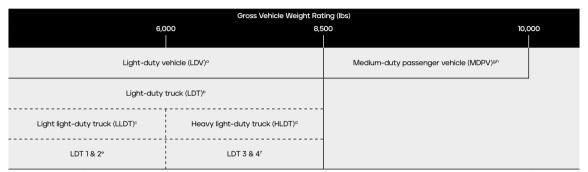
Emissions test procedure for all vehicles equipped with periodically regenerating systems

This requirement accounts for the higher emissions during periodic particulate filter regenerations.


The vehicle, starting with an empty particulate filter, is driven on several WLTC cycles until a regeneration occurs. The emissions are measured during the cycles, both with and without regeneration.

The K_i (see below) term is then calculated using measured emissions, frequency and distance. The manufacturer may elect to determine for each compound independently either additive offsets or multiplicative factors, in both cases represented by K_i.

$$K_i$$
 factor: $K_i = \frac{M_{pi}}{M_{\odot}}$ K_i offset: $K_i = M_{pi} - M_{si}$


If the distance between two successive periodic regenerations is more than 4,000 km of driving repeated Type 1 tests, it does not require a special test procedure, and K_i = 1.

Emission factors for periodically regenerating systems

 $M_{\!\scriptscriptstyle R}$ is the mean mass emissions of compound i, g/km. $M_{\!\scriptscriptstyle R}$ is the mean mass emissions of compound i during regeneration, g/km. $M_{\!\scriptscriptstyle R}$ is the mean mass emissions of compound i without regeneration, g/km. d is the number of complete applicable test cycles required for regeneration. D is the number of complete applicable test cycles between two cycles where regeneration events occur.

LIS FEDERAL AND CALIFORNIA - VEHICLE CATEGORIES

- ^a LDV means a passenger car or passenger car derivative capable of seating 12 passenaers or less.
- b California: LDT 1 LVW ≤ 3,750 lbs (same as federal): LDT 2 LVW 3,751 lbs to 8,500 lbs. C Also known as class 1
- d Also known as class 2a
- °LDT 1 if loaded vehicle weight (LVW) ≤ 3.750 lbs: LDT 2 if LVW > 3.750 lbs.
- LDT 3 if adjusted loaded vehicle weight (ALVW) < 5.750 lbs: LDT 4 if ALVW > 5.750 lbs.

9 Until 2026; vehicles designed primarily for the transportation of persons with a seating capacity of no more than 12 persons and with a cargo area of less than 72 inches. - From MY 2027 (EPA); some pickups up to 14,000 lbs included (see 40 CFR 86,1803-01

- and "Multi-Pollutant Emissions Standards for Model Years 2027 and Later Light-Duty and Medium-Duty Vehicles" preamble Section III.E).
- h MDPVs and trucks in this weight range also known as Class 2b.

EXHAUST POLLUTANT EMISSIONS STANDARDS

Limits on FTP

Historical

Historical

Historical

Historical

Current

b Diesel / gasoline.

° Certification standard - In-use value: 6 mg/mi. d On SETP e Phase in from 2017 to 2021

NMOG

(mg/mi)

90

909

90

LS FEDERAL (EPA) AND CALIFORNIA (CARB) - CHRONOLOGICAL OVERVIEW

NOx + NMOG

(ma/mi)

30h

30

15

30

NMHC

(ma/mi)

310

901

f Applicable to diesel only. Applicable for gasoline only.
 Phase-in from 2017 to 2025 (86 -> 30).

EXHAUST POLLUTANT EMISSIONS

From

model

vear

MY 1994

MY 2003

MY 2004

MY 2004

MY 2017

MV 2015

MY 2027

MV 2025

Name

FPA Tier ™

CARB LEV Iº

FPA Tier 2º

CARBIEVII

EPA Tier 3 final

NOx

(ma/mi)

1.250 / 600°

300

70

70

FTP 25°C

PM

(mg/mi)

1Of

8

70

70

3°

70

05

CO

(g/mi)

4.2

4.2

4.2

4.2

4.2d

17

17

HCHO

(mg/mi)

18

18

18

4

Λ

4

Useful life at

100,000 miles or 10 years

100,000 miles or 10 years

120,000 miles or 10 years

120,000 miles or 11 years

150,000 miles or 15 years

150.000 miles or 15 years

150.000 miles or 15 years

150,000 miles or 15 years

for intermediate life (half miles / years).

Phase-in from 2027 to 2032 (30 -> 15). Progressive ZEV phase-out for the fleet calculation kPhase-in from 2025 to 2028

US FEDERAL - TIER 3 STANDARDS

Tier 3 standards overview

- Tier 3 emissions standards were adopted in March 2014 and phased in from 2017 to 2025. The regulation also tightened sulfur limits. for gasoline
- Both the certification limits (Bins) and the fleet average standards are expressed using the sum of NMOG+NOx emissions
- · The required emission durability was increased to 150.000 mi or 15 vrs whichever comes first
- · Gasoline vehicles are tested for exhaust and evaporative emissions - using agsoline containing 10% ethanol (E10)
- · In-Use Verification Program (IUVP) and In-Use Confirmatory Program (IUCP) to check the vehicle conformity in real life
- · Provisions for carry-forward and carry-back of credits
- · Provision for carry-over programs with respect to in-use testing
- · Flex fueled vehicles are only required to provide assurance that the same emission reduction systems are used on non-agsoline fuel as on aasoline

Tier 3 Certification Bin Standards (FTP, 150,000 mi)

Bin	NMOG+NOx (mg/mi)	PM° (mg/mi)	CO (g/mi)	HCHO (mg/mi)
Bin 160	160	3	4.2	4
Bin 125	125	3	2.1	4
Bin 70	70	3	1.7	4
Bin 50	50	3	1.7	4
Bin 30	30	3	1.0	4
Bin 20	20	3	1.0	4
Bin 0	0	0	0	0

Tier 3 Federal and LEV III California were harmonized to create one set of limits for all 50 states.

^a In MY 2017-20 the PM standard applies only to that segment of a manufacturer's vehicles covered by the percent of sales phase-in for that model year (see page 40).

EXHAUST POLITITANT EMISSIONS STANDARDS

US FEDERA

US FEDERAL - TIER 3 STANDARDS

Tier 3 fleet average NMOG+NOx FTP limit phase-in (mg/mi)

Each manufacturer's fleet must on average meet the following standards in each year.

For LDVs and LDTs over 6,000 lbs GVWR and MDPVs, the fleet average standards apply beginning in MY 2018.

Tier 3 SFTPa fleet average phase-in for NMOG +NOx

Emission	2017	2018	2019	2020	2021	2022	2023	2024	2025	
NMOG+NOx (mg/mi)	103	97	90	83	77	70	63	57	50	
CO (g/mi)					4.2					

- Manufacturers self-select SFTP standards for each vehicle family (similar to bins)
- · Self-selected standards not to exceed 180 mg/mi
- · Average over whole fleet not to exceed tabulated values above

US06 is a dynamic cycle representative of aggressive driving with high accelerations (see annex).

SC03 is the cycle to take into account the air conditioning impact. The test is made at 35°C with A/C on (see annex).

 $^{\circ}$ Supplemental Federal Test Procedure - Results calculated with emissions measured on FTP-75, USO6 & SC03 SFTP (mg/mi) = 0.35 x FTP (mg/mi) + 0.28 x USO6 (mg/mi) + 0.37 x SC03 (mg/mi).

US FEDERAL - TIER 3 STANDARDS

Cold temperature standards

Cold temperature testing is conducted on the FTP cycle at -7° C for gasoline vehicles only to the following limits:

g/mi	со	NMHC
PC & LDT1	10.0	0.3
LDT2	12.5	0.5
LDT3 & LDT4	12.5	0.5

Other provisions

- Useful Life: The Clean Air Act prohibits useful life > 120,000 mi for LDV and LDT1. The 150,000 mi limit multiplied is voluntary. Tier 3 FTP limits at 120,000 miles are the respective 150,000 mi limit multiplied by 0.85 and rounding to negrest ma/mi. Limits for other cycles remain the same for both useful life periods
- · High Altitude: Tier 3 standards allow limited relief at high attitude. Manufacturers may comply with one bin higher at altitude. Bin 70 is capped at 105 mg/mi and Bin 160 gets no relief at altitude

· Enrichment Limits: Enrichment for Otto-cycle (PI) engines throughout the US06 cycle is limited to lean best torque ÷ 1.04 (See 40 CFR 86.1811-17(d)(1))

Phase-in of Tier 3 PM FTP Standards (ma/mi)a

Phase-in	2017	2018	2019	2020	2021	2022+
% of Sales	20	20	40	70	100	100

Phase-in of Tier 3 PM US06 Standards (mg/mi)^a

Phase-in	2017	2018	2019	2020	2021	2022	2023	2024+
% of Sales	20	20	40	70	100	100	100	100
Certification Standard	10	10	6	6	6	6	6	6
In-use Standard	10	10	10	10	10	10	10	6

^a Tier 3 PM standards apply to each vehicle category separately. In-use standard is relaxed until phase-in is complete.

EXHAUST POLITITANT EMISSIONS STANDARDS

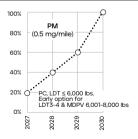
US FEDERAL - TIER 4 STANDARDS

Tier 4 standards

- Tier 4 emissions standards were adopted in March 2024 and phased-in from 2027 to 2032, significantly tightening pollutant standards as part of the "Multipollutant rule" that also includes greenhouse gas emission fleet average standards
- This rule is for light-duty emissions and applies also to medium-duty passenger vehicles (MDPV)
- Manufacturers must meet the NMOG+NOx fleet-average standards across four driving cycles (FTP, HFET, US06 and SC03) to ensure robust emissions control over a wide range of in-use driving conditions
- · The standard:
 - adds more bin resolution at low-emission bins (bin 5, bin 10, bin 15 and intermediate, i.e. bin 25)
 - eliminates the highest certification bins
 - the fleet average includes all vehicles including battery electric
- A cold temperature (-7°C) FTP NMOG+NOx limit of 300 mg/mi is also applied

- The reduced PM limit 0.5 mg/mi must be met by each individual vehicle across 3 test cycles, including a cold temperature (-7°C) test.
 It is phased in from MY 2027 to MY 2030 for LDV (see chart)
- · An HCHO limit is added on the standard FTP test
- The CO limit is reduced and is measured as NMOG + NOx, on all cycles

US FEDERAL - TIER 4 STANDARDS


NMOG+NOx fleet-average emissions standards

Model year	Light-duty NMOG+NOx (mg/mi)
2026 (Tier 3 for reference)	30
2027	25
2028	23
2029	21
2030	19
2031	17
2032	15
2033 and later	15

Emissions limits

Test eveles	Light-duty (mg/mi)				
Test cycles	PM	со	нсно		
FTP 25°C / HFET / SC03	0.5	1,700	4		
FTP -7°C	0.5	10,000	-		
US06	0.5	9,600	-		

Phase-in schedule for above PM standard

EXHAUST POLLUTANT EMISSIONS STANDARDS

CALIFORNIA - LEV III STANDARDS

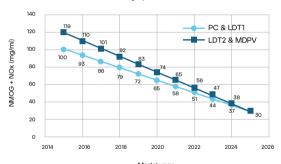
LEV III standards overview

- LEV III standards phase-in 2015-2025 MY. Beginning 2020 MY all vehicles must be certified to LEV III
- Both the certification limits (bins) and fleet average standards are expressed as NMOG+NOx
- The required emission durability has been increased to 150,000 miles from 120,000 miles

LEV III FTP standards

Passenger Cars and Light-Duty Trucks ≤ 8,500 lbs

Durability (mi)	Emission category	NMOG+ NOx (mg/mi	CO (g/mi)	HCHO (mg/mi)	Particulates ^a (mg/mi)
	LEV160	160	4.2	4	10
	ULEV125	125	2.1	4	10
150,000	ULEV70	70	1.7	4	10
150,000	ULEV50	50	1.7	4	10
	SULEV30	30	1.0	4	10
	SULEV20	20	1.0	4	10


- · Standards apply at full useful life
- Alternatives exist for the phase-in of 3 mg/mi and 10 mg/mi PM standards
- $^{\rm a}$ This limit shall apply only to the vehicles not included in the phase-in of particulate standards (see page 45).

CURRENT

CALIFORNIA - LEV III STANDARDS

LEV III NMOG + NOx fleet average phase-in

Model year

LEV III 50°F/10°C FTP standards

Light-Duty Trucks and Medium-Duty Passenger Vehicles must also demonstrate compliance with the following NMOG + NOx standards measured on FTP at 50°F.

Emission	NMOG+ N	HCHO (mg/mi)	
category	Gasoline Alcohol fuel		Both gasoline & alcohol fuel
LEV160	320	320	30
ULEV125	250	250	
ULEV70	140	250	16
ULEV50	100	140	
SULEV30	60	125	8
SULEV20	40	75	8

CALIFORNIA - LEV III STANDARDS

LEV III particulate phase-in schedule

	PC, LDT, MDPV				
Year	Percent of vehicles certified to:				
	PM = 3 mg/mi	PM = 1 mg/mi			
2017	10				
2018	20				
2019	40				
2020	70	0			
2021	100				
2022	100				

	PC, LDT, MDPV				
Year	Percent of vehicles certified to:				
	PM = 3 mg/mi	PM = 1 mg/mi			
2023	100	0			
2024	100	0			
2025	75	25			
2026	50	50			
2027	25	75			
2028	0	100			

LEV III SFTP individual standards

US06 and SC03 NMOG+NOx and CO Stand-Alone Exhaust Emission Standards for MY 2015 onwards LEV III Passenger Cars, Light-Duty Trucks and Medium-Duty Passenger Vehicles

Vehicle type	Durability (mi)		US06 Test		SC03 Test	
		Emission category ^a	NMOG + NOx (mg/mi)	CO (g/mi)	NMOG + NOx (mg/mi)	CO (g/mi)
All PCs; LDTs 0-8,500 lbs GVWR; and MDPVs	150,000	LEV	140	9.6	100	3.2
		ULEV	120	9.6	70	3.2
		SULEV (Option A) ^b	60	9.6	20	3.2
		SULEV	50	9.6	20	3.2

eEmission Category: Manufacturers must certify all vehicles, which are certifying to a LEV III FTP emission category on a 150,000 mi durability basis, to the emission standards of the equivalent, or a more stringent STP emission category. That is, all LEV III LEVs certified to 150,000 mi FTP emission standards shall comply with the SFTP ULEV emission standards. and all LEV III SULEV's certified to 150,000 mi FTP emission standards shall comply with the SFTP SULEV emission standards.

b Optional SFTP SULEV Standards. A manufacturer may certify light-duty truck test groups from 6,001 to 8,500 lbs. GWWR and MDPV test groups to the SULEV, option A, emission standards set forth in this table for the 2015 through 2020 model year, only if the vehicles in the test group are equipped with a particulate filter and the manufacturer extends the particulate filter emission warranty mileage to 200,000 miles. Passenger cars and light-duty trucks 0-6,000 lbs. GWWR are not eligible for this option.

CALIFORNIA - LEV III STANDARDS

SFTP NMOG+NOx and CO composite exhaust emission standards

- A manufacturer must certify LEV III (LEVs. ULEVs and SULEVs), such that the manufacturer's sales-weighted fleet average NMOG+NOx composite emission value, does not exceed the applicable NMOG+NOx SFTP composite emission standard
- · The CO composite emission value of any LEV III test group shall not exceed the CO composite emission standard (see next page)
- · SFTP compliance shall be demonstrated using the same gaseous or liquid fuel used for FTP certification
- · From 2018, all multi-fueled vehicles shall comply with all requirements established for each consumed fuel (or blend of fuels for fuelflexible vehicles). For each test group subject to this subsection. manufacturers shall calculate a Composite Emission Value for NMOG+NOx and, for LEV III test groups, a separate Composite Emission Value for CO. using the following equation:

 $Value = 0.28 \times US06 + 0.37 \times SC03 + 0.35 \times ETP$

- where: US06 = the test group's NMOG+NOx for CO emission value. as applicable, determined through the US06 test
- · where: SC03 = the test group's NMOG+NOx or CO emission value, as applicable, determined through the SC03 test
- · where: FTP = the test group's NMOG+NOx or CO emission value. as applicable, determined through the std FTP test

CALIFORNIA - LEV III STANDARDS

LEV III SFTP fleet average phase-in

US06 and SC03 NMOG+NOx and CO composite emission standards for MY 2015 onwards. Light-duty trucks and medium-duty passenger vehiclesa.

	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025+
All PCs; LDTs 0-		Co				eet Av Emissic				ni)	
8,500 lbs GVWR;	140	110	103	97	90	83	77	70	63	57	50
and MDPVs		CC) Com	posite	Exhau	ıst Emi	ssion S	Stando	ard (g/ı	mi)	
						4.2					

^a Mileage for compliance; all test groups certifying LEV III FTP emission standards on a 150,000 mi durability basis shall also certify to the SFTP on a 150,000 mi durability basis, as tested in accordance with these test procedures.

LEV III SETP PM standards

SETP PM exhaust emission standards for MY 2017 onwards LEV III. Passenger cars, light-duty trucks and medium-duty passenger vehicles^b.

Vehicle	Vehicle Test		Test		PM (mg/mi)		
type	weight	Durability	cycle	2018 and prior	2019+		
All PCs; LDTs 0-8,500 lbs GVWR; MDPVs	Loaded vehicle weight	150,000	USO6	10	6		

^b All PCs. LDTs and MDPVs certified to LEV III ETP PM emission standards on a 150,000 mi durability basis shall comply with the SFTP PM Exhaust Emission Standard.

CALIFORNIA - LEV IV STANDARDS (REVOKED)

LEV IV developments

CARB developed LEV IV as part of the Advanced Clean Cars II (ACC II) program to reduce emissions from ICE vehicles. The final text was adopted in November 2022 with the first introduction for MY 2025.

In June 2025, the President signed a resolution under the Congressional Review Act that revoked three California emissions waivers, including the one for ACC II, and that prevents "substantially similar" rules being implemented in future. LEV IV is therefore currently not due for implementation. The legality of the resolution is being challenged in court.

The following summary is included for orientation.

1. Bin structure

i. bii i sti ucture							
Emission category	NMOG+NOx ^a	со					
Emission category	mg/mi	g/mi					
ULEV125	125 / 160	4.2					
ULEV70	70 / 105	2.1					
ULEV60	60 / 90	1.7					
ULEV50	50 / 70	1.7					
ULEV40	40 / 60	1.7					
SULEV30	30 / 50	1.0					
SULEV25	25 / 50	1.0					
SULEV20	20 / 30	1.0					
SULEV15	15 / 30	1.0					

^a Standards at low / high altitude.

EXHAUST POLLUTANT EMISSIONS STANDARDS

CALIFORNIA - LEV IV STANDARDS (REVOKED)

2. NMOG + NOx fleet average

- · A combined NMOG + NOx fleet average of 30mg/mi applies to PC, LDT and MDPV vehicle categories
- · ZEVs and emission-adjusted PHEVs are included in the fleet average calculation with the ZEV part counted as zero, phased out according to the following schedule:

MY	2025	2026	2027	2028	2029
ZEV in fleet average (%)	100%	60%	30%	15%	0

- · Certification Bins are revised
 - LEV 160 only available through MY 2025
 - ULEV 125 only available through MY 2028
 - Existing ULEV 70, ULEV 50, SULEV 30 and SULEV 20 bins will be supplemented with new bins of ULEV 60, ULEV 40. SULEV 25 and SULEV 15

3 Particulate Matter Standards

Target of 1 mg/mi for all vehicles on ETP phased in as below

MY	2026	2027	2028
ZEV in fleet average (%)	50	75	100

Pure ZEVs are excluded from the requirement and phase-in.

- 4. Agaressive Driving Emission Standards
- · Option to use composite standards for certification will be removed
- · New US06 NMOG + NOx fleet average standard will be equal to FTP standard at 0.03 a/mile with altered bins and phase-in to 2030
- · US06 PM standard 3ma/mile with phase-in to 2028
- Attestation for SCO3 standards
- Phase-in Schedule will apply

MY	2026	2027	2028
Phase-in (%)	30	60	100

JPCOMING (REVOKED)

CALIFORNIA - LEV IV STANDARDS (REVOKED)

5. Additional provisions

- Additional NMOG+NOx emission tests for 10-minute, 30-minute, and 3-to-12-hour partial soaks, by attestation
- Quick drive away standard with 8 second idle, altered bins and phase-in to 2028

6. PHEV High Power Cold-Start Emissions

- · New cold-start US06 Certification test added
- · PHEVs capable of running US06 without ICE use will be exempt

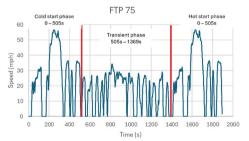
Tier 2 standards overview

- · Tier 2 standards were phased in from 2004-2009
- Same standards applicable to cars and trucks up to 8,500 lbs GVWR (most sport utility vehicles, pickup trucks and vans)
- Tier 2 also added Medium-Duty Passenger Vehicles (MDPV) from 8,500 lbs to 10,000 lbs GVWR into the normal requirement
- Vehicles up to 8,500 lbs GVWR must also meet Tier 2 limits on Supplemental Federal Test Procedure (SFTP)
- Emissions limits are fuel neutral, i.e. applicable to gasoline, diesel and all other fuels
- NOx fleet average of 0.07 g/mi is fully phased in from 2009 and must be met at 120.000 mi / 10 vrs
- Any of the 8 standard 'bins' can be used for a specific vehicle provided the total fleet average NOx emissions are within the 0.07 g/mi limit
- Temporary 'bins' expired in 2006 for LD vehicles and LD trucks and in 2008 for HLD trucks and MD Passenger vehicles

- In lieu of intermediate useful life standards (50,000 mi) or to gain additional nitrogen oxides credit, manufacturers may optionally certify to the Tier 2 emission standards with a useful life of 150,000 mi
- Test covered: Federal Test Procedures (FTP), cold carbon monoxide, highway and idle MY > 2004+

CONTENTS

Bin structure for passenger cars, light-duty trucks and medium-duty passenger vehicles


Emissions limits (50,000 r			Emissions limits (50,000 mi)						ife (120,000 mi))
Standard	NOx (mg/mi)	NMOG (mg/mi)	CO (g/mi)	PM (mg/mi)	HCHO (mg/mi)	NOx (mg/mi)	NMOG (mg/mi)	CO (g/mi)	PM (mg/mi)	HCHO (mg/mi)
Bin 1	-	-	-	-	-	0	0	0	0	0
Bin 2	-	-	-	-	-	20	10	2.1	10	4
Bin 3	-	-	-	-	-	30	55	2.1	10	11
Bin 4	-	-	-	-	-	40	70	2.1	10	11
Bin 5	50	75	3.4	-	15	70	90	4.2	10	18
Bin 6	80	75	3.4	-	15	100	90	4.2	10	18
Bin 7	110	75	3.4	-	15	150	90	4.2	20	18
Bin 8ª	140	100 / 125	3.4	-	15	200	125 / 156	4.2	20	18

^a Pollutants with two numbers have a separate certification standard (3st number) and in-use standard (2st number).

₩PHINIA

US FEDERAL AND CALIFORNIA

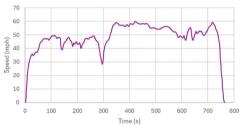
City driving cycle^a

Total duration: 1,874 sec. (+hot soak: 540 sec. min., 660 sec. max.) Length: 11.04 mi (17.77 km)

Average speed: 21.19 mph (34.2 km/h - stop excluded)

Simultaneous engine crank and bag sampling start. Initial idle is 20 sec. Max. speed: 56.68 mph (91.2 km/h)

Between Phase II and Phase III. Hot Soak (9-11 min.)

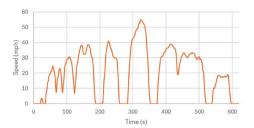

Total duration: 765 sec Length: 10.26 mi (16.5 km)

Average speed: 48.30 mph (77.7 km/h)

Max. speed: 59.91 mph (96.4 km/h)

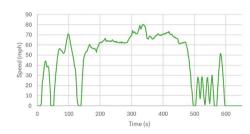
Also known as FTP 75. FPA III - Phase I + II. also known as: FTP 72. FPA II. UDDS, LA-4.

HWFET (Highway Fuel Economy Driving Schedule)



EXHAUST POLITITANT EMISSIONS STANDARDS

CURRENT



SCO3 Air Conditioning Driving Cycle

Total duration: 598 sec. Length: 3.58 mi (5.76 km) Average speed: 21.55 mph (34.9 km/h) Max. speed: 54.8 mph (88 km/h) Initial idle: 18 sec.

US06 High Speed/High Load Driving Cycle

Total duration: 596 sec. Length: 8.01 mi (12.86 km) Average speed: 48.37 mph (77.2 km/h) Max. speed: 80.03 mph (129 km/h) Initial idle: 5 sec. Max. acceleration: 8 mph/s

Overview of standards

Chinese emission standards for passenger cars and light-duty commercial vehicles up to China 5 are based on European regulations.

Vehicle classification

It is based on the EU classification, with some differences.

Category Class Mass ^e		Masse	EU reference		
Type 1	-	GVW ≤ 2,500 kg	M ₁ vehicles for no more than 6 passengers including drive		
	I	RM ≤ 1,305 kg	Other light-duty vehicles		
Type 2	II	1,305 kg < RM ≤ 1,760 kg	(including N₁ light		
	III	RM > 1.760 kg	commercial vehicles)		

Implementation dates

Ctara l	Ctan days	Reference Region		Implement	ation dates
Stage/s	stanaara	Reference	Region	NT	NV
	N4		Nationwide	1 Jul 2010	Pl: 1 Jul 2011 Cl: 1 Jan 2015
	3352.3- 005	Euro 4	Beijing (B4)	1 Mar	2008
2.	500		Shanghai	1 Nov	2009
	CN5 Nation		Nationwide	1 Jan	2016 ^{a,b} 2017 ^a 2018°
	3352.5- 013	Euro 5	Beijing (B5)		Cl: 1 Feb 2013 1 Jan 2015
			Shanghai	1 May	2014 ^{a,d}
CN6a GB 18352.6-		Euro 6	Nationwide 1 Jul 2020		2020
CN6b	2016	Eulo 6	Nationwide	1 Jul	2023

^a Light-duty gasoline vehicles and public buses, sanitary and postal vehicles.

b In 11 Eastern provinces only (Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu,

Zhejiang, Fujian, Shandong, Guangdong and Hainan).

[°] All vehicles.

d Gasoline vehicles

*;

PR OF CHINA - CHINA 6 STANDARD

China 6 (CN6) - emission limits

China 6 standards are fuel neutral, same limits apply for gasoline and diesel vehicles. CN6 emissions testing is to be carried out over the WLTP cycle.

Unlike Euro 6, an N2O limit is applied.

Stage	Category	Class	co	THC	NMHC	NOx	N ₂ O	PM	PΝ°
stage	Category	Ciass		g/km					
	Type 1		0.70	0.10	0.068	0.060	0.020	0.0045	6×10 ^π
CN6a		- 1	0.70	0.10	0.068	0.060	0.020	0.0045	6×10 [™]
	Type 2	II	0.88	0.13	0.090	0.075	0.025	0.0045	6×10 [™]
		III	1.00	0.16	0.108	0.082	0.030	0.0045	6×10 [™]
	Type 1		0.50	0.050	0.035	0.035	0.020	0.0030	6×10 [™]
CN6b		- 1	0.50	0.050	0.035	0.035	0.020	0.0030	6×10 [™]
CINOD	Type 2	II	0.63	0.065	0.045	0.045	0.025	0.0030	6×10 [™]
		III	0.74	0.080	0.055	0.050	0.030	0.0030	6×10 [™]

[°] PN limit of 6x1012 applied to gasoline vehicles until July 2020.

China 6 - real driving emissions (RDE)

- CN6b includes a RDE test based on Euro 6 RDE with conformity factors of CF = 2.1 both for NOx and PN
- RDE emissions test conformity are applicable to all vehicles from July 2023. Until July 2023, RDE tests results were monitored and reported
- The cold start period is recorded but excluded from RDE data evaluation
- A further extended condition is added for altitude comprised between 1,300 m and 2,400 m with an emission corrective factor of 1 / 1.8
- · MAW data evaluation method is used

The payload during an RDE test can vary, but is never more than 90% of the vehicle's maximum load.

Ambient condition	Moderate	Extended	Further extended
Emissions corrective factor	1	1 / 1.6	1 / 1.8
Temperature	0 ≤ T ≤ 30°C	-7 ≤ T < 0°C; 30 < T ≤ 35°C	-
Altitude	≤ 700 m	700 < Alt ≤ 1,300 m	1,300 < Alt ≤ 2,400 m

PR OF CHINA - CHINA 6 STANDARD

Trip composition and validation parameters are close to those applied in FU

- · Specific boundary conditions presented in page 57
- · Same trip requirement & composition please refer to EU part page 26
- · Same driving dynamics criteria please refer to EU part page 27
- · Same method for CO₂ characteristic curve (please refer to EU part page 28), but specific Reference Point

Vehicle CO₂ characteristic curve

WLTC phases	Low-speed (LS)	High-speed (HS)	Extra-high speed (EHS)	
Reference point	P1	P2	P3	
Reference point: Speed (km/h)	19 km/h	56.6 km/h	92.3 km/h	
Reference point: CO ₂ (g/km)	1.2 x CO _{2 LS-WLTP}	1.1 x CO _{2 HS-WLTP}	1.05 x CO _{2 EHS-WLTP}	

· Specific verification of overall trip dynamics with different upper tolerances and condition of completeness: When the number of urban, rural and motorway windows accounts for more than 15% of the total number of windows respectively, the test is considered to be completed

Trip dynamics parameters

	Urban	Rural	Motorway				
Windows bins thresholds	Speed < 45 km/h	45 ≤ Speed < 80 km/h°	80° ≤ Speed < 145 km/h				
Completeness	≥ 15%	≥ 15% ≥ 15% ≥ 15%					
To	olerance around CO	2 characteristic curv	/e				
Upper tolerance		+ 50% ^b					
Lower tolerance		- 25%					
% of windows within the tolerance band							
RDE test valid if	≥ 50% ≥ 50% ≥ 50%						

a 70 km/h for No vehicle with 90 km/h speed limiting device.

EXHAUST POLITITANT EMISSIONS STANDARDS

^b The upper tolerance may be increased by steps of 1% until 50%.

PR OF CHINA - CHINA 6 STANDARD

China 6 - durability requirements

Deterioration factors or values are used to comply with emissions limits during Type I test. They can be determined by one of the following three methods:

- · Whole vehicle ageing test of 160,000 km for CN6a and 200.000 km for CN6b (During transition period to 1 July, 2023 160,000 km is applied)
- · Engine bench ageing durability test
- · Application of the assigned multiplicative or additive deterioration factors from the following tables

Durability: Assigned multiplicative deterioration factors (CN6)

Engines	co	THC	NMHC	NOx	N ₂ O	PM	PN
PI	1.8	1.5	1.5	1.8	1	1	1
CI	1.5	-	-	1.5	1	1	1

Durability: Assigned additive deterioration factors (CN6)

Engin	es	co	THC	NMHC	NOx	N ₂ O	PM	PN
PI	6a	150	30	20	25	0	0	0
PI	6b	110	16	10	15	0	0	0
CI	6a	150	-	-	25	0	0	0
CI	6b	110	-	-	15	0	0	0

The manufacturer may use the deterioration correction values of Type IV tests as specified below.

Category	Deterioration values
Test type IV	0.06 g/test

*:

PR OF CHINA - CHINA 6 STANDARD

Test type III - crankcase emissions

Any gas in the engine crankcase is not allowed to be directly discharged into the atmosphere. If the crankcase exhaust is introduced into the upstream exhaust of the exhaust aftertreatment device (closed) under all operating conditions, the crankcase exhaust is deemed to meet the requirements. Otherwise, the crankcase discharge should be introduced into the emission sampling system and tested according to the evaluation method of the crankcase pollutants. If the emission test results meet the limit requirements, then the crankcase emissions meet the standard requirements.

Engine operating conditions for the crankcase emissions test

Operating condition	Speed (km/h)	Power absorbed by the chassis dynamometer
1	ldle	None
2	50±2 (Gear 3 or forward gear)	Equivalent to the adjusting state under 50 km/h in Type I test
3	50±2 (Gear 3 or forward gear)	Set value of condition 2 multiplied by 1.7

Test type VI - low temperature test (-7°C)

CN6 includes a low temperature emissions test at -7°C +/-3°C to be carried out with a cold start over the low and medium speed phases of the WLTC, applicable to both gasoline and diesel vehicles.

Cold-start emission limits

Stage	Category	Class	CO g/km	THC g/km	NOx g/km
	Type 1		10	1.20	0.25
CN6		I	10	1.20	0.25
CNO	Type 2	II	16	1.80	0.50
		III	20	2.10	0.80

PR OF CHINA - CHINA 7 STANDARD

China 7

China 7 is currently under development.

Implementation: Nationwide implementation planned in 2029.

The final draft is expected end of 2025 for public consultation.

Key areas requiring further specification may include:

- Simultaneous reductions in GHG and criteria pollutant emissions (new pollutants as NH₃, NMOG, PN₁₀)
- Possible limit values for HC + NOx: 40 mg/km for passenger cars, 60 mg/km for light commercial vehicles
- NEVs inclusion in the regulatory framework to better reflect the fleet mix (battery durability...)
- Testing methodologies and data processing protocols review for Real Driving Emissions (RDE) testing (cold start / low load considerations, new compliance tools)
- · EVAP testing stringency (including refuelling)
- · Non-exhaust (brake and tyres) PM emissions limits
- · Enhanced OBD

Annex

CONTENTS

PR OF CHINA - CHINA 4 & 5 STANDARDS

China 4 - China 5 emission standards - positive ignition engines

Stago	Stage Category		co	THC	NMHC	NOx	PM	PN	
stage	Category	Class		g/km					
	Type 1		1.00	0.10	-	0.08	-	-	
CN4		_	1.00	0.10	-	0.08	-	-	
CN4	Type 2	=	1.81	0.13	-	0.10	-	-	
		=	2.27	0.16	-	0.11	-	-	
	Type 1		1.00	0.10	0.068	0.060	0.0045°	-	
CN5		- 1	1.00	0.10	0.068	0.060	0.0045°	-	
Туре	Type 2	Ш	1.81	0.13	0.090	0.075	0.0045°	-	
		Ш	2.27	0.16	0.108	0.082	0.0045°	-	

- · From CN1 to CN5, testing is to be carried out over the NEDC cycle
- Durability requirements are 5 years or 100,000 km for CN4 and 160,000 km for CN5

Ching 4 - Ching 5 emission standards - compression ignition engines

Stage	Category	Class	co	THC + NOx	NOx	PM	PN			
stage	Category	Class		g/km			#/km			
	Type 1		0.50	0.30	0.25	0.025	-			
CN4		- 1	0.50	0.30	0.25	0.025	-			
CN4	Type 2	II	0.63	0.39	0.33	0.040	-			
		III	0.74	0.46	0.39	0.060	-			
	Type 1		0.50	0.230	0.180	0.0045	6x10 ¹¹			
CN5		- 1	0.50	0.230	0.180	0.0045	6x10 ¹¹			
	Type 2	II	0.63	0.295	0.235	0.0045	6x10 ¹¹			
		III	0.74	0.350	0.280	0.0045	6x10 ¹¹			

^a Applies only to direct injection positive ignition engines.

PR OF CHINA - CHINA 4 & 5 STANDARDS

China 4 - China 5 emission standards - compression ignition engines (cont.)

Durability: Assigned deterioration factors (CN4)

Engines	со	HC	NOx	HC + NOx	PM
PI	1.2	1.2	1.2	-	-
CI	1.1	-	1.0	1.0	1.2

Durability: Assigned deterioration factors (CN5)

		Durability	: Assigne	d deterior	ation fact	tors (CN5)	
Engines	со	THC	NMHC	NOx	THC + NOx	РМ	PN
PI	1.5	1.3	1.3	1.6	-	1.0	-
CI	1.5	-	-	1.1	1.1	1.0	1.0

China 5 - low temperature test (-7°C)

CN5 includes a low temperature emissions test at -7° C to be carried out with a cold start over four urban cycles of the NEDC, applicable to gasoline vehicles.

Stago	Category	Category Class		THC
Stage	Category	Cidss	g/l	km
	Type 1		15	1.80
CN5	Type 2	1	15	1.80
CINO		II	24	2.70
		III	30	3.20

Overview of standards

India follows European standards, with some adaptations to suit the local environmental conditions. Vehicle categories are the same as the corresponding Euro standard. India applies the Modified India Driving Cycle (MIDC), which is NEDC with maximum speed limited to 90 km/h.

Current Regulation in India is BS VI-2, very close to Euro 6d. BS VI-3 applies an adapted version of WLTC (see page 69).

Implementation dates (nationwide)

Standard	Sub standards	Date	Emission cycle	RDE	Legisl- ation ref.
BS VI (ref. Euro 6)	BS VI-1	1 April 2020	MIDC	Monitoring	AIS 137 (Part 3)
	BS VI-2	1 April 2023	MIDC	CF NOx = 1.43 CF PN = 1.5	AIS 137 (Part 3)
	BS VI-3	1 April 2027	WLTC 3 phases ^a	CF NOx = 1.43 CF PN = 1.5	AIS 175

Also called iWLTC.

In-service conformity (ISC) testing:

- Max. mileage: 100.000 km or 5 years
- Type I Tailpipe Emissions + OBD (IUPR)

Deterioration factors

Frainc	BS VI: Assigned deterioration factor								
Engine category	со	THC	NMHC	NOx	HC+ NOx	PM	PN		
PI	1.5	1.3	1.3	1.6	-	1	1		
CI	1.5	-	-	1.1	1.1	1	1		

- · In case of PI engines, PM and PN deterioration factors shall apply only to vehicles using direct injection
- · For the deterioration factor evaluation, manufacturers may alternatively perform a vehicle gaeing test of 160,000 km or bench ageing durability test, as per AIS-137

BS VI emission standards - positive ignition

	,	Vehicle			THC	NMHC	NOx	PM□	PN ^{a,b}
Stage	Category	Class	Ref. mass (RM) (kg)	mg/km					#/ km
	M (M ₁ & M ₂)		All	1,000	100	68	60	4.5	6×10 ¹¹
		- 1	RM ≤ 1,305	1,000	100	68	60	4.5	6×10 ¹¹
BS VI	N ₁	II	1,305 < RM ≤ 1,760	1,810	130	90	75	4.5	6×10 ¹¹
		III	RM > 1,760	2,270	160	108	82	4.5	6×10 [™]
	N ₂	-	All	2,270	160	108	82	4.5	6×10 [™]

^a Applies only to direct injection positive ignition engines.

BS VI emission standards - compression ignition

	,	Vehicle	•	СО	THC + NOx	NOx	PM	PN
Stage	Category	Class	Ref. mass (RM) (kg)	mg/km			#/ km	
M (M ₁ & M ₂	M (M ₁ & M ₂)	-	All	500	170	80	4.5	6×10 ¹¹
	·	- 1	RM ≤ 1,305	500	170	80	4.5	6×10 ¹¹
BS VI		II	1,305 < RM ≤ 1 760	630	195	105	4.5	6×10 ¹¹
		III	RM > 1,760	740	215	125	4.5	6×10 ¹¹
	N ₂	-	All	740	215	125	4.5	6×10 ¹¹

In case of PI engines, PM and PN factors shall apply only to vehicles using direct injection. For the deterioration factor evaluation, manufacturers may alternatively perform a vehicle ageing test of 160,000 km or bench gaeing durability test, as per AIS-137.

^b Until three years after date of implementation for new type approvals and new vehicles. PN limit of 6×10¹² /km shall apply to BS VI PI DI vehicles upon choice of the manufacturer.

Real driving emissions

Major part of RDE methodology is coming from Euro 6c (RDE pack 3), but India has added some country specificities described here. Everything that is common is described in the Europe section.

RDF is currently not tested during ISC.

RDE - conformity factors in two steps

BS VI	Date	NOx	PN	
BS VI - 1	April 2020	Monitoring		
BS VI - 2	April 2023	1 + margin NOx = 1 + 0.43	1 + margin PN = 1 + 0.5	

RDE - boundary conditions of a valid trip

Ambient condition	Moderate	Extended
Emissions correction factor	1	1 / 1.6
Temperature	10 ≤ T ≤ 40°C	8 ≤ T 10°C; 40 < T ≤ 45°C
Altitude	≤ 700 m	700 < Alt ≤ 1,300 m

RDF - trip requirement for a valid RDF test

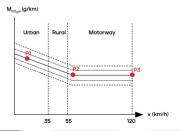
The trap requirement for a valua tibe test							
Driving portion	Urban	Rural	Motorway				
	Speed ≤ 45 km/h⁵	45 < Speed ≤ 65 km/h°	65 km/h < Speed ^d				
Minimum distance	16 km	16 km	16 km				
Distance share ^e	34 (+/-10%)	33 (+/-10%)	33 (+/-10%)				
Total trip duration	90 - 120 minutes						
Average speed including stops	15 < Avg. < 30 km/h	-	-				
Total stop time (v < 1 km/h)	6 - 30% Urban time	-	-				
Individual stop time	≤ 300 sec.	-	-				
v > 75 km/ha	-	-	≥ 5 min.				
v > 100 km/h	-	-	< 3% Motorway time				

a 70 km/h for N, vehicles and 55 km/h for Low Powered vehicles.

 $[^]b$ Valid for M_1 & N_1 low powered vehicles – 40 km/h for N_1 . c Valid for M_1 & N_1 low powered vehicles – 40 km/h < Speed < 60 km/h for N_1

d Valid for M₂ = 60 km/h for N₂ = N/A for N₂ low powered vehicles

[°] For low powered vehicles: 50% Urban / 50% Rural.



1. RDE - driving dynamics criteria

 Criteria on driving dynamics are similar to EU (see EUROPE section page 27)

2. RDE - vehicle CO2 characteristic curve

- The India RDE uses the first EU RDE methodology for the analysis (called pack 3 RDE)
- The first step consists of building the ${\rm CO_2}$ mass characteristic curve:

Vehicle CO₂ mass characteristic curve

WLTC phases	Low-speed (LS)	High-speed (HS)	Extra-highspeed (EHS)	
Reference point	PΊ	P2	P3	
Reference point: Speed (km/h)	19 km/h	59.3 km/h	120 km/h	
Reference point: Mass CO ₂ (g/km)	Mass CO₂ MIDC Ph1 / 1.1	Mass CO ₂ MIDC Ph2/ 1.1	Mass CO ₂ MIDC Ph2/ 1.1	

- Then, using PEMS 1 Hz data, moving average windows method is used to define windows with CO₂ equal to 100% CO₂ mass generated during the entire MIDC
- In each window, vehicle speeds and CO₂ emissions (expressed in g/km) are averaged, and plotted as a point together with the vehicle CO₂ characteristic curve obtained from the MIDC test

GAS / FUEL
CONSUMPTION / ZEV

ON-BOARD
DIAGNOSTIC AND
MONITORING

EVAPORATIVE EMISSIONS STANDARDS FUELS

L-CATEGORY EMISSIONS STANDARDS

3. RDE - verification of overall trip dynamics

- Unlike in Europe, the MAW method is used not only to evaluate the validity of the trip, but also to adjust emissions based on the position on the CO₂ characteristic curve
- The trip is divided into urban, rural and motorway parts based on speed as defined in following table

	Urban	Rural	Motorway				
Windows bins thresholds	Speed < 35 km/h	55 ≤ Speed < 120 km/h					
Tolerance around CO ₂ characteristic curve							
Tolerance 1 (Tol ₁) (High & Low)	+ / - 25% - Could be extended to 30%						
Tolerance 2 (Tol ₂) (High & Low)	+ / - 50%						

· The test shall be complete when it comprises at least 10% of urban. rural and motorway windows, out of the total number of windows for all categories of vehicles

 The test shall be considered valid when at least 50% of the urban, rural and motorway windows are within the primary tolerance defined for the characteristic curve

4 RDF - final emissions calculation

· Emissions are calculated for each Window:

$$M_{gas,d,k} = \frac{\sum (W_j M_{gas,d,j})}{\sum W_j} \text{ where k = urban, rural and motorway}$$

- · The weighing factor w_i, for each window, is dependent on the average CO₂ measured in this window vs. the average vehicle speed:
 - If the value is within Tolerance 1, w. = 1 (no correction)
 - If the value is between Tolerance 1 and Tolerance 2, w. is interpolated between the values 1 and 0
 - If the value is outside Tolerance 2, w = 0

UPCOMING

INDIA - STANDARDS IN PLANNING

WLTC introduction (AIS 175)

WLTC will be introduced in April 2027 with a complete update of Type I procedure mainly coming from UNR154 (including update on road load determination. Gear Shift pattern).

The reference cycle is WLTC 3 phases, excluding the Extra-High phase

Category		PMR (W/kg)	Speed phases	
Class 3a (V _{max} < 120 km/h)		PMR > 34	Low ₃ +Medium _{3b} +High _{3b}	
3	3b (V _{max} ≥ 120 km/h)	PIVIR > 54	Low ₃ +Medium _{3a} +High _{3a}	
Class 2		22 < PMR ≤ 34	Low ₂ +Medium ₂ +High ₂	
Class 1		PMR ≤ 22	Low ₁ +Medium ₁ +High ₁	

The RDE will also be impacted with the reference cycle changing from MIDC to WLTC. Furthermore, the post-processing will follow the European one (pack 4 - UNR168 - see Europe section):

- · The MAW are used only to assess the validity of the trip
- · Tol, is changed & Tol, is not used anymore
- The final RDE correction (R.) is applied

The country-specific details (trip composition and temperatures) will remain the same as they are in BS VI.

CF will not change.

BS7

Based on the directions of SCOE (Standing Committee on Emissions) and AISC (Automotive Industry Standard committee), various panels and subgroups have been formed on different BS-7 topics to study Euro 7 directive 1257/2024 and prepare the draft for BS7 regulation, with members from Industry and Associations.

Main scope of the sub-panels will be to study the Euro-7 regulations and procedure and formulate equivalent AIS for BS-7 norms.

Based on the current AIS-175 document as the base. AIS n°215 is allotted for BS-7:

- · Part-1: Light Duty Vehicles
- · Part-2: Heavy Duty Vehicles

Schedule - AIS 215 draft document D0 by Q2 of 2026.

Currently the planned date for LDV implementation is 2029.

EXHAUST POLITITANT EMISSIONS STANDARDS

Overview

Starting from 1 June 1999 in NCRa and in other cases 1 April 2000, for both four-wheeled LD and HD vehicles, India adopted European regulations concerning emissions and fuel consumption (BS-I).

Implementation dates

Standard	Date	Region					
	01 April 2010	NCR°, 13 cities ^{b,c}					
	01 July 2015	Above plus 29 cities ^d					
BS IV (ref. Euro 4)	01 Oct 2015	North India + bordering districts of Rajasthan (9 States)					
, ,	01 April 2016 Western India + parts of South and East India (10 States and Territories)						
	01 April 2017 Nationwide						
BS V (ref. Euro 5)	Initially proposed in November 2015 but removed from a February 2016 proposal, transitioning the nation directly from BS IV to BS VI						

a National Capital Region (Delhi).

^b Mumbai, Kolkata, Chennai, Bangalore, Hyderabad, Secunderabad, Ahmedabad, Pune, Surat, Kanpur and Agra.

above cities plus Solapur and Lucknow. The program was later expanded with the aim of including 50 additional cities by March 2015.

d Mainly in the states of Haryana, Uttar Pradesh, Rajasthan and Maharastra.

Emission standards

Emissions cycle: MIDC

Stage	Vehicle			со	THC + NOx ^a	NOx	PM
stage	Category Class Ref. mass (RM) (kg)				CI . mg.	/ PI /km	
	M (GVW ≤ 2,500 kg or less than 6 seaters)	-	All	500 / 1,000	300 / 100°	250 / 80	25 / -
BS IV	N ₁ & M (GVW > 2,500 kg or more than 6 seaters)	1	RM ≤ 1,305	500 / 1,000	300 / 100°	250 / 80	25 / -
		Ш	1,305 < RM ≤ 1,760	630 / 1,810	390 / 130º	330 / 100	40 / -
		Ш	RM > 1,760	740 / 2,270	460 / 160°	390 / 110	60 / -

The durability of anti-pollution device is determined either by an actual durability run over 80,000 km or by application of assigned deterioration factors.

Engine	BS IV: Assigned deterioration factor						
category	со	THC	NOx	HC + NOx	PM		
PI	1.2	1.2	1.2	-	-		
CI	1.1	-	1.0	1.0	1.2		

EXHAUST POLLUTANT EMISSIONS STANDARDS

^a Only THC were measured for PI engine.

JAPAN

Emission standards - gasoline and LPG

			Test mode	Unit	со	NMHC	NOx	PM ^a	PN ¹¹
New Short Term	2000	Passenger Car	10-15 Mode	g/km	0.67	0.08	0.08		-
			11 Mode	g/test	19.0	2.20	1.40		
	2002	Mini Commercial Vehicle	10-15 Mode	g/km	3.30	0.13	0.13		
			11 Mode	g/test	38.0	3.50	2.20		
	2000	Light Commercial Vehicle (GVW ≤ 1.7 t)	10-15 Mode	g/km	0.67	0.08	0.08		
			11 Mode	g/test	19.0	2.20	1.40		
	2001	Medium Commercial Vehicle (1.7 t < GVW ≤ 3.5 t)	10-15 Mode	g/km	2.10	0.08	0.13	-	
			11 Mode	g/test	24.0	2.20	1.60		
New Long Term	2005	Passenger Car			1.15	0.05	0.05		
	2007	Mini Commercial Vehicle	JC08	er // cme	4.02				
	2005	Light Commercial Vehicle (GVW ≤ 1.7 t)	3008	JC08 g/km	1.15				
	2005	Medium Commercial Vehicle (1.7 t < GVW ≤ 3.5 t)]		2.55		0.07		
Post New Long Term	2009	Passenger Car	JC08	g/km	1.15		0.05	0.05	
		Mini Commercial Vehicle			4.02				
		Light Commercial Vehicle (GVW ≤ 1.7 t)			1.15				
		Medium Commercial Vehicle (1.7 t < GVW ≤ 3.5 t)			2.55		0.07	0.07	

CONTENTS

Emission standards - gasoline and LPG (cont.)

			Test mode	Unit	СО	NMHC	NOx	PM ^α	PN⁵
2018		Passenger Car			1.15				
2018 regulations 2019		Mini Commercial Vehicle			4.02	0.10	0.05	0.005 (0.007)	-
	2019	Light Commercial Vehicle (GVW ≤ 1.7 t)	WLTP°	g/km	1.15				
		Medium Commercial Vehicle (1.7 t < GVW ≤ 3.5 t)			2.55	0.15	0.07	0.007 (0.009)	-
2024 PN regulation			WLTP°	#/km	S	Same as 201	8 regulation	S	6x10 ¹¹

^a PM limit applied for stoichiometric direct injection gasoline engines. Effective from December 2020 for new vehicles and November 2022 for existing vehicles. Number in brackets is upper limit value.

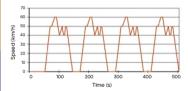
^b PN limit applied for gasoline direct injection engine only.

[°] WLTP Level 1B (UNR 154).

CONTENTS

Emission standards - diesel

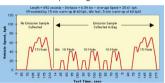
			Test mode	Unit	со	NMHC ^a	NOx	PM	PN
		Passenger Car (VW ≤ 1,265 kg)					0.28	0.052	
Now Chart Torre	2002	Passenger Car (VW > 1,265 kg)	10-15 Mode	g/km	0.63	0.12	0.30	0.056	
New Short Term		Light Commercial Vehicle (GVW ≤ 1.7 t)	10-15 Mode			0.12	0.28	0.052	
	2003	Medium Commercial Vehicle (1.7 t < GVW ≤ 3.5 t)					0.49	0.06	
		Passenger Car (VW ≤ 1,265 kg)					0.14	0.013	
New Long Term	2005	Passenger Car (VW > 1,265 kg)					0.15	0.014	-
New Long Term	2005	Light Commercial Vehicle (GVW ≤ 1.7 t)					0.14	0.013	
		Medium Commercial Vehicle (1.7 t < GVW ≤ 3.5 t)	JC08			0.024	0.25	0.015	
		Passenger Car					0.08	0.005	
Post New Long Term	2009	Light Commercial Vehicle (GVW ≤ 1.7 t)					0.08	0.005	
101111		Medium Commercial Vehicle (1.7 t < GVW ≤ 3.5 t)]				0.15	0.007	
	2018	Passenger Car					0.15	0.005	
2018 regulations	2010	Light Commercial Vehicle (GVW ≤ 1.7 t)	WLTP♭				0.15	0.005	1
	2019	Medium Commercial Vehicle (1.7 t < GVW ≤ 3.5 t)					0.24	0.007	
2023 PN regulation	PN regulation 2023 All the categories		WLTP ^b	#/km	s	ame as 2018	3 regulations	3	6x10 ¹¹


^aHC used for New Short Term.

EXHAUST POLLUTANT EMISSIONS STANDARDS

^b WLTP Level 1B (UNR 154).

Driving cycles


11 Mode cold cycle
Japan 11 mode

Distance: 4.084 km
Duration: 480 s
Max. speed: 60 km/h
Average speed: 30.6 km/h

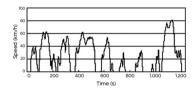
10-15 Mode cold cycle

Japan 10-15 Exhaust Emission & Fuel Economy Driving Schedule

Distance: 6.34 km Duration: 892 s

Average speed: 25.61 km/h

(Preceded by 15 min. warm-up at 60 km/h, idle test, 5 min. warm-up at 60 km/h)


Emissions are more used during the last 4.

Emissions are measured during the last 4

segments:

Distance: 4.16 km Max. speed: 70 km/h Duration: 660 s Avg. speed: 22.7 km/h

Driving cycle JC 08

Distance: 8.2 km
Duration: 1,205 s
Max. speed: 80 km/h
Average speed: 24.4 km/h

Vehicle categories

(Updated based on 2023 Environmental Certification Guidelines)

- Mini-car: Engine displacement < 1.000 cc
- · Passenger Car: Engine ≥ 1,000 cc, GVW < 3.5 t, up to 10 seats
- Medium Passenger Vehicle: GVW ≥ 3.5 t or ≥ 11 seats
- Light Commercial Vehicle: GVW < 3.5 t. ≤ 10 seats
- Medium Commercial Vehicle: 3.5 t < GVW < 15 t
- Heavy-Duty Vehicle (HDV): GVW > 15 t
- · ZEV (Zero Emission Vehicle): Certified battery electric (BEV) or fuel cell (FCEV) vehicles under separate Ministry of Environment rules

Regulatory background

Korea applies either EU-based or US/CARB-based emission standards. depending on application.

- · Gasoline Vehicles: Since 2009, Korea has adopted the CARB NMOG+NOx Fleet Average System (FAS) for gasoline-fueled LDVs. Automakers must meet fleet-average NMOG+NOx targets using a range of certified vehicle categories: LEV, ULEV, SULEV, ZEV
- · Diesel Vehicles: Since 2014. Korea applies Euro 6 standards, with Euro 6d fully implemented from 2021
- Real Driving Emissions (RDE) and Enhanced Test Cycles: Since 2021. RDE and additional cycles like US06 / SC03 have been more widely applied for compliance evaluation
- · ZEV Classification: Battery electric vehicles (BEV) and hydrogen fuel cell vehicles (FCEV) are classified under ZEV and must meet separate certification requirements under Korea's Green Vehicle Promotion Act

Gasoline fueled vehicles - K-LEV III equivalent to US LEV III, (2016-present)

Catagoni	Durability (km)	Ex	khaust emissions (g/km)		Notes	
Category	Durability (km)	NMOG + NOx ^{f,a,b}	CO ^{f,a,b}	PM	Notes	
Standard 1 (LEV160)		0.100 / 0.087 / 0.062	2.61 / 5.97 / 2.0	0.002 / 0.006°	Cold CO 6.3 g/km²	
Standard 2 (ULEV125)		0.078 / 0.075 / 0.044	1.31 / 5.97 / 2.0			
Standard 13 (ULEV70)		0.044 / 0.075 / 0.044	1.06 / 5.97 / 2.0			
Standard 4 (ULEV50)	15y / 240k	0.031 / 0.075 / 0.044	1.06 / 5.97 / 2.0			
Standard 5 (SULEV30)		0.019 / 0.03 / 0.01	0.625 / 5.97 / 2.0			
Standard 6 (SULEV20)		0.0125 / 0.03 / 0.01	0.625 / 5.97 / 2.0			
Standard 7 (ZEV)e		Or	Or	-	Applies to BEV & FCEV	

[©] For USO6 mode

^b For SC03 mode.

[°] PM values: 0.002 g/km (CVS-75 mode), 0.006 g/km (US06).

d Cold CO limit (-6.7°C): 6.3 g/km (CVS-75 mode).

^e ZEV: Zero Emission Vehicle category defined by Korea's Green Vehicle.

f For CVS-75 mode.

KLEV-III Phase-in and fleet average system

		2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Phase-in for EVAP	%	0	0	30	30	80	80	100	100	100	100
Phase-in for PM	%	0	10	20	40	70	100	100	100	100	100
FTP FAS	NMOG+NOx	0.063	0.058	0.053	0.048	0.043	0.039	0.034	0.029	0.024	0.019
SFTP FAS°	(g/km)	0.069	0.064	0.061	0.056	0.052	0.048	0.044	0.039	0.036	0.031
SF IP FAS	CO (g/km)					2.	61				

 $^{^{\}rm o}$ Manufacturer self select SFTP standards for each vehicle family.

Exhaust emissions standards for diesel fueled vehicles

	Light- duty vehicles	Euro 5b	Euro 6b	Euro 6c	Euro 6d-tempº	Euro 6d⁵
ĺ	NT	1 Sep 2011	1 Sep 2014		1 Oct 2017	1 Jan 2020
ĺ	NV	1 Sep 203	1 Sep 2015	1 Sep 2018	1 Sep 2015	1 Jan 2021

 $^{^{\}rm o}$ WLTC mode and RDE NOx + PN. $^{\rm b}$ Enforced RDE NOx + PN.

2026 and beyond:

- As of 2025, there is no official announcement from the Korean Ministry of Environment regarding updated NMOG+NOx or CO targets for 2026 or 2027
- Korea is monitoring EU Euro 7 regulations but has not declared any adoption schedule
- Future regulations may reflect global trends such as Euro 7 or US EPA Tier 4, as well as a stronger emphasis on Real Driving Emissions (RDE)

BRAZIL - PROCONVE L8 STANDARDS

Overview and standards

· Implementing date: January 2025

PROCONVE L8 fleet average NMOG + NOx limits (mg/km)

Implementation Date	Passenger Cars	Commercial Vehicles
1 January 2025	50	140
1 January 2027	40	110
1 January 2029	30	50
1 January 2031	30	30

- · Several parameters equivalent to PROCONVE L7:
 - Cycles: FTP75
- Durability: 160.000 km / 10 years for Diesel vehicles
- Fuels

- Smoke index in free acceleration
- Periodic regeneration K. factor
- · Auxiliary emissions control device (AECD) declaration required for all vehicles. Emissions increasing (EI) AECD required for CI vehicles. Alternative option is AES/BES documentation (based on EU)
- a Only spark-ignited direct injection or diesel engines.
- b Only diesel engines with SCR using urea.
- ° Only Pl.
- d MF = Tost mass

Available emission levels (ma/km)

	Level	NMOG+ NOx	PM ^a	со	Aldehydes	NH ₃ ^b (ppm)
	320	320	20	1,000	-	
	280	280	20	1,000	-	
Diesel LCV	250	250	20	1,000	-	
Diesei LCV	220	220	10	1,000	-	
	200	200	10	1,000	-	
	170	170	9	1,000	-	
SI LCV and diesel LCV	140	140	6	1,000	15	
above 1,700 kg ME ^d	110	110	6	1,000	15	10
	80	80	6	1,000	15	
	70	70	4	600	10	
Light Passenger and	60	60	4	600	10	
Light Commercial Vehicles up to 1,700	50	50	4	600	10	
ka ME ^d	40	40	4	500	10	
	30	30	3	500	8	
	20	20	2	400	8	
	0	null	null	null	null	null

EXHAUST POLLUTANT EMISSIONS STANDARDS

BRAZIL - PROCONVE L8 STANDARDS

Real driving emissions (RDE)

RDE testing started with PROCONVE L7 with a monitoring phase.

The testing is largely inspired by UNR168 but with some Brazilian adaptations:

With PROCONVE L8, NMHC + NOx emissions requirements appeared:

Application date	Pollutants	CF
January 2025	NMHC + NOx	2
January 2027	NMHC + NOx	1.5

- · Trip composition: 65% Urban / 35% Rural
- · Maximum Speed: 110 km/h
- · Temperature range:

Standard → 15°C ≤ T_ ≤ 35°C

Extended → 10°C ≤ T_{...} < 15°C - 35°C < T_{...} ≤ 40°C

· Reference CO₂ from FTP:

P1=phase 2 FTP / P2 = phase 3 FTP / P3 = P2

All other parameters are equivalent to Europe (Evaluation method. extended factor, altitude, Stop time, Final correction...) - See Europe section (pages 24 to 30).

BRAZIL - PREVIOUS STANDARDS

PROCONVE L5 and L6 standards

Implementation dates:

- · PROCONVE L5: MY 2009 onwards
- · PROCONVE L6: MY 2014 onwards

Relevant parameters (from CY 2002):

- Fixed deterioration factors for annual production < 15,000 vehicles:
 CO and HC 12, NOx 1.1
- Unburned ethanol is not allowed to be deducted from hydrocarbon emission results
- FTP-75 cycle / Highway cycle test (E22 and E100 fuels only ABNT NBR 7024)
- · Fuels:
 - Certification required with E22 fuel for E22 vehicles
 - Certification required with E22 / E60 / E100 and CNG for a tri-fuel vehicle

L5 and L6 emissions limits on FTP

Vehicle	Standard (g/km)	NMHC	со	NOxª	Alde- hydes ^c	PM⁵
PC	L5	0.05	2.0	0.12 (0.25)	0.02	0.050
PC	L6	0.05	1.3	0.08	0.02	0.025
LCV≤	L5	0.05	2.0	0.12 (0.25)	0.02	0.050
1,700 kg	L6	0.05	1.3	0.08	0.02	0.030
LCV >	L5	0.06	2.7	0.25 (0.43)	0.04	0.060
1,700 kg	L6	0.06	2.0	0.25 (0.35)	0.03	0.040

- · Durability 80,000 km / 5 years
- Total HC only for natural gas powered vehicles: 0.3 g/km for PC/LCV ≤ 1,700 kg, 0.5 g/km for LCV > 1,700 kg
- $\cdot\,$ CO at idle speed for gasoline: 0.2% in volume
- ^a Diesel limits in brackets.
- ^b PM only for diesel engines.
- ^c Aldehyde limits only for Otto-Cycle vehicles.

CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV ON-BOARD DIAGNOSTIC AND MONITORING EVAPORATIVE EMISSIONS STANDARDS

FUELS

EMISSIONS STANDARDS

BRAZIL - PREVIOUS STANDARDS

PROCONVE L7 Standards

- · Implementation date: January 2022
- FTP-75 cycle (ABNT NBR 12.026:2016, ABNT NBR 15598:2016, ABNT NBR 6.601:2012, ABNT NBR 16.567:2016)
- · Highway cycle test (E22 and E100 fuels only ABNT NBR 7024)
- · RDE monitoring
- Durability 160,000 km / 10 years

Deterioration factors should be determined through vehicle mileage accumulation testing. Alternatively, for annual production < 15,000 vehicles, assigned DF could be used:

Engine type	Multiplicative factor for exhaust emissions								
Engine type	NMHC	со	NOx	Aldehydes	PM				
Diesel	1.2	1.2	1.2	1.0	1.2				
Otto	1.4	1.4	1.2	1.2	1.0				

- Smoke index in free acceleration for Diesel vehicles: 0.4 $\mbox{m}^{\mbox{\tiny -1}}$ up to 2,000 \mbox{m}

Emissions limits on ETP

Vehicle	NMOG+NOx (mg/km)	PM° (mg/km)	CO (mg/km)	Aldehydes ^c (mg/km)	NH3 ^b (ppm)
PC	80	6		15	
LCV ≤ 1,700 kg	140°	6°	1,000	15	To be declared
LCV > 1,700 kg	320 ^d	20 ^d		-	

- Only spark-ignited direct injection or diesel engines. Donly diesel engines with SCR using urea. Only spark-ignited engines. Donly diesel engines.
- Certification fuels:
 - E22 for E22 vehicles
 - E22 / E60 / E100 and CNG for tri-fuel vehicles
- · Regenerative emission control devices (see EU section):
- Periodic regeneration process at less than 4,000 km of vehicle operation; K_i factor is necessary
- Determine according to UN ECE R83 Rev5 (EU before Euro 6c)
- Additive or multiplicative coefficient

CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV ON-BOARD DIAGNOSTIC AND MONITORING EVAPORATIVE EMISSIONS STANDARDS

FUELS

L-CATEGORY EMISSIONS STANDARDS

OTHER AREAS OF THE WORLD - EMISSIONS REQUIREMENT

Argentina	Since 2018, for ALL vehicles: Euro 5a
Australia	Current legislation: Euro 5a Starting December 2025: Euro 6d
Canada	Starting MY 2017, harmonization with the emission standards of the US EPA Tier 3 program
Chile	Vehicle emissions standards in Chile are based on EU standards; options to use US EPA standards are also in place: • Current legislation: EU standard: Euro 6b / US standard: Tier 3 bin 125 • From October 2025: EU standard: Euro 6c / US standard: Tier 3 bin 70
Hong Kong	California LEV III standards apply for new diesel passenger cars since 1 October 2017; Euro 6c standards apply to new gasoline passenger cars from 1 September 2019
Indonesia	From April 2022, requirements for all new diesel duty vehicles is to comply with Euro 4
Mexico	Current legislation: either Tier 2 or Euro 4

Morocco	Current legislation: for all vehicles from July 2024, Euro 6b
	Current options: Gasoline Euro 5 or US Tier 2 or Japan 2005 or Japan 2018 or ADR ^o 79/04 Diesel Euro 5 or US Tier 2 or Japan 09 or ADR 79/04
New Zealand	Next step options (1 Dec 2025 for NT, 1 July 2028 for NV): Gasoline Euro 6d or US Tier 3 or Japan 2018 or UNR83/08 or ADR 79/05 Diesei Euro 6d or US Tier 3 or Japan 2018 or UNR83/08 or ADR 79/05
Peru	Peru applies EU emissions requirements and options are also given to comply with US Federal standards. Current legislation: Euro 4 / US EPA Tier 2 Bin 5. From October 2025: Euro 6b or more stringent (US Tier3 bin 125)
Philippines	Current legislation: Since January 2016, Euro 4
Russia	Current legislation: Starting January 2013, Euro 5a
Saudi-Arabia	Current legislation: Gasoline vehicles: Euro 4 Diesel vehicles: Euro 5b

^a Australian Design Rule

EXHAUST POLLUTANT EMISSIONS STANDARDS

OTHER AREAS OF THE WORLD - EMISSIONS REQUIREMENT

Singapore	Current legislation: Euro 6d Options to certify vehicles to standards based on Japan 2009 or Japan 2018 requirements are also in place (with some conditions: PN / WLTC cycle)
South Africa	Current legislation: Euro 2 Implementation of Euro 5 delayed
Switzerland	Has national requirements harmonized to EU requirements
Taiwan	Current legislation: from September 2019, Euro 6d-temp. (US EPA Tier 3 as an option)
Thailand	Current legislation, from January 2025: SI engines: Euro 6 Diesel vehicles: Euro 5
Turkey	Current legislation: Euro 6
UK	Current legislation: Euro 6d (UNR154 / UNR168)

EXHAUST POLLUTANT EMISSIONS STANDARDS

WE KNOW THAT THE STEPS WE
TAKE TODAY IMPACT THE WORLD
WE HAVE TOMORROW. THAT'S WHY
WE'RE MOVING TOWARDS GREATER
SUSTAINABILITY, IMPROVING RESOURCES,
AND EXPLORING INVESTMENTS FOR A
CLEANER FUTURE.

EUROPEAN UNION - CO₂ EMISSION STANDARDS GENERAL PROVISIONS

EU regulation on CO_2 emission reduction for passenger car (M_1) and light commercial vehicles (N_1)

Regulation (EC) No. 443/2009 set standards for average specific emissions of CO₂ for each manufacturer for new passenger cars (PC) registered in the EU in each calendar year for 2015 to 2019, and 2020 onwards. (EC) No. 510/2011 set the same for light commercial vehicles (LCV) (starting in 2017).

Regulation (EU) 2019/631 set new annual standards for both passenger cars and light commercial vehicles for 2025 to 2029 and 2030 onwards.

In 2023, Regulation (EU) 2019/631 was amended to tighten the 2025 and 2030 standards for passenger cars and light commercial vehicles and set zero $\rm CO_2$ targets for 2035.

Timeline of CO₂ standards according to relevant test cycles

	Passen	ger cars	Light commercial vehicles					
	NEDC°	WLTP ^b	NEDC	WLTP				
2015	130 g/km		175 g/km (2017)					
2020°	95 g/km —	→ equivalent ^e	147 g/km	→ equivalent°				
2025 ^d		-15%		-15%				
2030		-55%		-51%				
2035		-100%		-100%				

^aNew European Driving Cycle.

EXHAUST
POLLUTANT EMISSIONS
STANDARDS

CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

ON-BOARD DIAGNOSTIC AND MONITORING EMISSIONS STANDARDS FUELS

EMISSIONS STANDARDS

b World Light-duty Test Procedure.

[°]Phased in, applicable to 95% of fleet in 2020, 100% in 2021.

dCompliance permitted over 2025-2027 period instead of

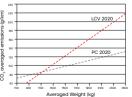
individual years.

[°]NEDC target converted to WLTP.

CONTENTS

EUROPEAN UNION - CO₂ EMISSION STANDARDS GENERAL PROVISIONS

CO₂ emission limit curves to calculate manufacturer targets


The CO_2 emission annual target varies as a function of the vehicle mass. CO_2 target vs. mass curves for each manufacturer are defined by the following formula:

$$CO_2$$
 = Target + a x (M - M_0)

Where:

- · Target = fleetwide CO2 target for all vehicles sold
- · a = slope of the CO2 vs. mass curvea
- · Mo is the European fleet averaged mass of previous years (see table)
- M is the average mass of the manufacturer's vehicles in the year in question

CO₂ emission limit curves for Passenger Cars and Light Commercial Vehicles, showing the example of 2020.

Parameters for target curves

The parameters for the target curves until 2025 are set out in the table below.

Vehicle	Years	Target g/	а	M _o / TM _o (2025)	M _o / TM _o averaging	
type		km (WLTP)	g/km / kg	kg	basis years	
	2020-2021	110.1	0.0333	1,379.88	2014 - 2016	
Passenger Cars	2022-2024	110.1	0.0555	1,455.69	2017 - 2019	
	2025	93.6	-0.0144b	1,650.15	2021 - 2023	
	2020	147° (181.1)		1,766.40	2016	
Light	2021-2023	181.1	0.096	1,825.23	2018	
Commercial	2024	181.1		1,875.07	2019 - 2021	
Vehicles	2025	153.9	0.0848 / 0.1064 ^d	2,161.13	2022 - 2023	

 $^{^{\}rm a}$ Target line slope equal to 60% of the slope of the best fit straight line of CO $_{\!2}$ vs. mass of all vehicles in the fleet.

EXHAUS I POLLUTANT EMISSIONS STANDARDS CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

DIAGNOSTIC AND MONITORING EVAPORATIVE EMISSIONS STANDARDS FUELS

EMISSIONS STANDARDS

 $^{^{\}rm b}$ Note negative slope of 2025 curve, due to effect of high-mass low-emission plug-in hybrids.

^c Target level refers to the NEDC emission test procedure, with conversion to WLTP in brackets.

 $^{^{\}rm d}$ For vehicles less than / greater than ${\rm TM_0}$ respectively.

EUROPEAN UNION - STANDARDS FOR 2021-2024

CO₂ fleet target 2021 to 2024 adapted to WLTP from NEDC

The WLTP test procedure was introduced in September 2017 to replace the NEDC. From 2017 to 2020, the CO₂MPASS correlation tool was used to transpose CO2 emissions measured on WLTC into the NEDC values applied to calculate manufacturers' performance in comparison to the original NEDC CO_o targets. In 2020, the CO_o emissions of all new vehicles were determined with both NEDC and WLTP, to enable the conversion to the specific WLTP emission target for 2021.

Starting 2021, manufacturers had individual CO₂ reference targets based and measured on WLTP adapted to 14°C, converted from NEDC.

The reference target is calculated from the manufacturer's target fulfillment obtained in 2020 based on NEDC, and from its CO₂ performance obtained in 2020 on WLTP, as follows:

$$WLTP_{reference.target} = WLTP_{2020_CO_2} \cdot \left(\frac{NEDC_{2020 target}}{NEDC_{2020_CO_2}} \right)$$

Where:

· WLTP2020 CD, is the averaged CO2 emissions in 2020 obtained on WLTP

- NEDComp target is the 2020 fleet specific emission target of the OFM
- · NEDC_{2020, CO2} is the averaged CO₂ emissions in 2020 calculated on NFDC

The specific WLTP emission target for each manufacturer is calculated according to their average mass, correcting for the average mass in 2020 as follows:

Specific emission target = WLTP_{reference target} + $a [(M_o - M_O) - (M_{o,2020} - M_{0,2020})]$

Where:

- · a is the coefficient defined for the year 2020 in table on previous page
- · Mo is the reference mass for the specific calendar year, for 2021 it is the same as 2020
- · Ma is the manufacturer's averaged mass in the specific calendar year
- · Magaza is the reference mass for 2020 defined in table on previous page
- M₋₋₋₋₋ is the manufacturer's averaged mass registered in 2020.

CURRENT

EUROPEAN UNION - STANDARDS FOR 2025-2029 AND 2030-2034

Calculation of 2021 CO2 reference value

As a basis for calculating targets for 2025 and subsequent years, a $\rm CO_2$ reference value for 2021 is calculated for each OEM, as follows:

$$Reference \ value_{2021} \ (i) = WLTP_{2020_CO_{_{_{2}}Measured}} \cdot \left(\frac{NEDC_{2020\ fleet\ target}}{NEDC_{2020_CO_{_{_{3}}}}} \right) + a \cdot (M_{0.2021} - M_{0.2021})$$

Where:

- WLTP_{2020_CO2_measured} is the manufacturer's averaged CO₂ emission in 2020
- NEDC₂₀₂₀ is the fleet target (95 g CO₂/km for PC; 147 g CO₂/km for LCV)
- · a is the coefficient 0.0333 for PC; 0.096 for LCV
- $M_{\text{0.2021}}$ is the manufacturer's averaged mass in running order registered in 2021
- $M_{0.2021}$ is the averaged mass in running order of all new vehicles registered in 2021
- $\cdot\,$ Reference values for 2021 are 110.1 g/km for PC and 181.1 g/km for LCV

Fleet-wide CO2 target

From 2025 a unique WLTP EU target is defined for the fleet of all vehicles sold, based on the weighted average of the OEM reference values for 2021, and applying the reduction factors for 2025 and 2030, as follows:

$$\text{EU Fleet wide target}_{2025/2030} = \left(\frac{\sum \text{Reference value}_{2021:0} \cdot \text{N(i)}}{\sum \text{N(i)}}\right) \cdot (1 - \text{reduction factor}_{02025/2030})$$

Where:

- · N(i) is the number of vehicles sold by OEM (i) in 2021
- $\cdot\,$ Reduction factor = reduction in CO_2 target compared to 2020 target
- · Reduction factor₂₀₂₅ = 0.15 (15% reduction)
- Reduction factor $_{2030}$ = 0.55 for PC (55% reduction); 0.51 for LCV (51% reduction)

CURRENT

EUROPEAN UNION - STANDARDS FOR 2025-2029 AND 2030-2034

Calculation of manufacturers' individual CO2 targets

From 2025 the 'specific emissions reference target' of each OFM is calculated by adjusting the fleet-wide target by the weight-based limit curve as follows:

Specific emissions reference target = EU Fleet wide target = = = (TM - TM₀)

Where:

- · TM is the manufacturer's averaged test mass of vehicles sold in the calendar year
- · TMo is the EU averaged test mass of all vehicles registered in the calendar vear
- · The weight coefficient for 2025 or 2030 a2025/2030 is adapted from the 2021 value:

$$a_{2025/2030} = a_{2021} \cdot \left(\frac{\text{EU Fleet wide } \text{target}_{2025/2030}}{\text{Average } \text{emissions}_{2021}} \right)$$

Where:

· aggs is the slope of CO2 emissions versus test mass of all vehicles reaistered in 2021 in the EU

Calculation of manufacturers' individual CO2 targets adjusted for 7LFV factor

From 2025, each OEM's specific emissions target can be increased (made less stringent) by the 'ZLEV factor' if the share of zero and low-emission vehicles is above a set threshold.

Specific emissions target (1997) = Specific emissions reference target (1997) - ZLEV Factor

The ZLEV factor = 1+v-x, where:

· y = the weighted share of low and zero emissions vehicles in the manufacturer's fleet (< 50 a CO₂/km), in which each ZLEV is given a weight known as:

ZLEV specific = 1 - Specific emissions of CO₂

- · x is the benchmark for low and zero emission vehicles:
 - -x = 25% for PC and 17% for LCV for the years 2025 to 2029
 - Maximum value 105
 - Minimum value 10

CO. / GREENHOUSE GAS / FLIFE CONSUMPTION / ZEV

EUROPEAN UNION - STANDARDS FOR 2025-2029 AND 2030-2034

Modalities for applying the CO₂ fleet average targets

Each manufacturer has an individual target based on the calculations detailed on the previous page. Manufacturers submit fleet data after the end of each the year to the European Commission for verification.

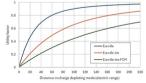
1. Eco-innovation credit

Eco-innovations are technologies that reduce CO_2 emissions whose effects are not captured in the test cycle CO_2 measurement. Proposed eco-innovations are submitted to the European Commission for approval. When installed in vehicles, the technology gains a CO_2 credit that must be greater than 1 g/km CO_2 per innovation. The maximum permitted contribution of eco-innovations is:

- · 7 g CO₂/km per year until 2024
- · 6 g CO₂/km per year from 2025 until 2029
- · 4 g CO₂/km per year from 2030 until 2034

2. Excess emission premiums

If the manufacturer's averaged CO₂ is above its specific target, an excess emissions premium (penalty) applies. The annual premium is €95 per g/km above the manufacturer's individual target multiplied by the number of vehicles sold during the year by the manufacturer.


3. Plua-in hybrids

The $\rm CO_2$ emissions of plug-in hybrids (PHEVs) are determined from the $\rm CO_2$ measured using the ICE with the electric motor switched off (charge sustaining mode) according to a 'utility factor' dependent on their electric range (distance in charge-depleting mode). The $\rm CO_2$ value is calculated as:

PHEV ${\rm CO_2}$ value = ${\rm CO_2}$ measured in charge sustaining mode x (1 – UF)

The calculation of the utility factor is being adapted according to real-world data and will be reduced in two steps from 2025 to 2027 when new Euro 6 stages are implemented, see chart.

4. Utility factor vs. electric range

Example values	
----------------	--

-		UF (100)	CO₂ g/km
	Euro 6e to 2024	0.9	12
	Euro 6e-bis (from 2025)	0.66	42
220	Euro 6e-bis-FCM (from 2027)	0.44	68

EXHAUS I POLLUTANT EMISSION: STANDARDS CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

DIAGNOSTIC AND MONITORING EMISSIONS STANDARDS

FUELS

EMISSIONS STANDARDS

CONTENTS

EUROPEAN UNION - STANDARDS FOR 2025-2029 AND 2030-2034

Amendments to CO₂ fleet targets 2025 to 2029

In June 2025, Regulation (EU) 2025/1214 was adopted amending Regulation 2019/631 regarding the enforcement of the targets from 2025 to 2027.

The amendment allows OEMs to average out their emissions over the three-year period from 2025 to 2027, instead of being required to meet the 2025-2029 target in each individual year.

In practice this amendment allows OEMs to have a CO_2 value higher than the target in one or two of the three years, as long as it is compensated by an equivalent over-performance in the other one or two years.

The US has 2 sets of parallel standards:

- 1. CAFE Corporate average standards adopted by NHTSA
- 2. Greenhouse Gas (GHG) standards based on CO2 under EPA

History

- CAFE standards were first adopted in 1975 and nearly doubled fleet average fuel economy by 1985. CAFE standards remained in force but targets remained steady through 2010
- The Energy Independence and Security Act (EISA) was passed in 2007, mandating a 40% increase in fuel economy in the following decades. In a parallel development in 2007, the US Supreme Court ruled CO_2 as a pollutant under the Clean Air Act (CAA), leading to the 2009 "Endangerment finding" enabling CO_2 emissions from mobile sources to be regulated under the CAA
- Under CAFE, manufacturers can pay penalties in lieu of meeting standards. Under the CAA, civil penalties apply for manufacturers not complying with GHG standards, significantly higher than the CAFE penalties, with the potential for more severe sanctions
- In April 2010, EPA and NHTSA finalized new harmonized CAFE and GHG Rules for MY 2012-2016 light-duty vehicles

- In August 2012, EPA and NHTSA issued joint final rules extending the harmonized GHG and CAFE standards for MY 2017-2025
- On 31 March 2020, the US EPA and NHTSA issued the SAFE Final Rule Part 2 that modified CAFE and CO₂ standards setting an improvement rate of 1½% per annum from MY 2020 basis applied to MY 2021 to MY 2026
- On 30 December 2021, the EPA published revisions to the light-duty GHG emission standards for MY 2023 through MY 2026, making the GHG standards more stringent than under the previous SAFE rule
- On 20 March 2024, the EPA published further revisions to the to the light-duty GHG emission standards for MY 2027 through MY 2032, continuing the downward trajectory of the targets

Recent developments

- In July 2025, the EPA issued a proposal to reverse the 2009
 Endangerment Finding and roll back the CO₂ standards for light and heavy-duty vehicles. A final decision is due later in 2025
- CAFE: in July 2025, the One Big Beautiful Bill was signed into law, including a provision that eliminates CAFE penalties from MY 2022

EXHAUS I POLLUTANT EMISSION: STANDARDS CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

DIAGNOSTIC AND MONITORING EVAPORATIVE EMISSIONS STANDARDS

FUELS

EMISSIONS STANDARDS

2017-2025 standards (SAFF rule)

Standards are based on CO₂ emissions-footprint curves, where each vehicle has a different fuel economy and CO2 emissions compliance target depending on its 'footprint' value, related to track and wheelbase of the vehicle. The table on the next page provides estimated final requirements provided in the SAFE Rule release.

1. CH₄ and N₅O Standards

In addition to the fleet-average CO emission targets, the rule also includes emission caps for tailpipe N₂O and methane emissions (FTP-75). These were unchanged in the SAFE rule.

- N₂O: 0.010 a/mile - CH₄: 0.030 g/mile
- 2. Flexibilities

The regulation also includes a system of Avergaina, Banking and Trading (ABT) of credits, based on a manufacturer's fleet average CO₂ performance. Credit trading is allowed between vehicle types and between companies.

The rule includes credits for

· Advanced technology vehicles

- Reduced leakage from AC refrigerant
- Improved AC efficiency
- · Off-cycle CO2 reducing technologies
- · Qualifying full-size light pickup trucks (that deploy mild or full hybrid systems to fleet percentage targets or better than targets by 15-20%)

3. Revision

In 2021, EPA adopted revised GHG standards^b tightening the CO₂ taraets for MY 2023+ (see table).

Multipollutant rule

On 20 March 2024, the EPA issued the 'Multipollutant rule' that set fleet average CO2 standards for cars and light trucks from 2026 to 2032 (see table).

According to the regulatory impact analysis, compliance with the rule is projected to require increasing shares of zero-emission vehicles. reaching 56% in 2032 for the combined car and light truck fleet.

- ^a See 40 CFR 86.1866.12 86.1871.12 and 49 CFR 531.6 for details. ^b Federal Register Pages 74434-74526 Published 30 December 2021.

CO. / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

US - CO₂ AND CAFE STANDARDS

2017-2032 overview of standards - average of OEMs' CAFE and CO₂ Estimated Final Requirements^a

	category	SAFE rule					Revised CO ₂ rule			Multipollutant rule								
	dard by el year	2017	2018	2019	2020	2021	2022ь	2023	2024	2025	2026	2026	2027	2028	2029	2030	2031	2032
Passenger	CO₂ g/mi	219	208	197	188	183	180	181	166	158	149	131	139	125	112	99	86	73
Cars	CAFE (mpg)	39	40.4	41.9	43.6	44.2	44.9	45.6	46.3	47.0	47.7	-	60.0	61.2	62.5	63.7	65.1	66.4
Light-Duty	CO₂ g/mi	295	285	278	270	264	259	234	222	207	187	184	184	165	146	128	109	90
Trucks	CAFE (mpg)	29.4	30	30.5	31.1	31.6	32.1	32.6	33.1	33.6	34.1	-	42.6	42.6	43.5	44.3	45.2	46.2
Combined	CO₂ g/mi	255	244	235	226	220	216	202	192	179	161	168	170	153	136	119	102	85
Cars & Truck Fleet	CAFE (mpg)	33.8	34.8	35.7	36.8	37.3	37.9	38.5	39.1	39.8	40.4	-	47.3	47.4	48.4	49.4	50.4	51.4
YOY ^c redu	iction (CO ₂)	-	4.3%	3.7%	3.8%	2.7%	1.8%	6.5%	5.0%	6.8%	10.1%	_d	_d	10%	11.1%	12.5%	14.3%	16.7%

^a Projected fuel economy required before credits and incentives. ^bSAFE Pule Reference Value

[°] Year over Year CO₂ Reduction for Combined Fleet.

^d No increase vs. previous year.

CALIFORNIA - ZERO-EMISSION VEHICLE MANDATE

History

- The federal Clean Air Act allows the California Air Resources Board (CARB) to adopt more stringent emissions rules, including ZEV mandates, than federal rules if the EPA grants an authorizing waiver
- Other states may elect to follow California rules instead of federal.
 These are known as Section 177 states
- · The following provides a historical timeline:
 - 1990: the first ZEV mandate was adopted requiring 2% of sales to be ZEV in 1998 rising to 10% in 2003
 - 1998: the 'ramp-up' years were eliminated with the 2003 10% target retained
 - 2002: a lawsuit prevented CARB from enforcing the ZEV mandate in 2003 and 2004
- 2004: a new rule set targets from 2005 to 2018 with a credit multiplier scheme that enabled manufacturers to meet targets partially with non-ZEV vehicles
- 2009: the targets from 2009 onwards were suspended

- 2012: CARB adopted the Advanced Clean Cars program (ACC), setting ZEV mandate and GHG targets (aligned to federal GHG) from 2018 to 2025
- 2019: EPA issued the SAFE rule weakening federal CO_2 standards from 2021 onwards, and withdrew CARB's ACC waiver, revoking its ability to implement its ZEV mandate
- 2021: EPA reinstated CARB's waiver for ACC
- 2022: CARB adopted the Advanced Clean Cars II (ACC II) program, setting ZEV mandate targets from 2026 to 2035
- 2025: the US Congress passed a resolution, signed by the President, revoking the California waivers for ACC II, preventing it from entering into force and "substantially the same" rules being implemented in future
- As of 2025, 15 Section 177 states plus California, representing almost 40% of the market, were implementing the ACC ZEV mandate
- CARB intends to continue enforcement of ACC, with the MY 2025 ZEV target of 22% in force for MYs 2026 onwards, which is however disputed by EPA

CALIFORNIA - ZERO-EMISSION VEHICLE MANDATE

Advanced Clean Cars (ACC) - ZEV mandate from 2018-2025

In 2012, CARB adopted the Advanced Clean Cars program including updated ZEV targets for model years 2018 to 2025 (see table), with a credit-based system.

Each vehicle manufacturer obtains either ZEV credits to meet a minimum ZEV floor percentage or 'transitional' ZEV (TZEV) to meet the remaining requirement.

Model year	2018	2019	2020	2021	2022	2023	2024	2025+
General percentage ZEV requirement	4.5%	7.0%	9.5%	12.0%	14.5%	17.0%	19.5%	22.0%
Minimum ZEV floor	2%	4%	6%	8%	10%	12%	14%	16%
Maximum TZEV option	2.5%	3%	3.5%	4%	4.5%	5%	5.5%	6%

CALIFORNIA - ZERO-EMISSION VEHICLE MANDATE

ACC: Definitions of ZEV types and the credits available for each

Acronym	Eligible vehicle types	Can fulfill obligation	(Equivalent) All Electric Range ((E)AER) ^b	ZEV credits
			< 50 Miles	0
ZEV□	Battery electric vehicle Fuel cell electric vehicle	ZEV	50 mi ≤ AER ≤ 350 mi	0.5+0.01 x AER
ruel cell electric verlicie			> 350 miles	4
NEV°	ZEV low-speed vehicles	ZEV	N/A	0.15
			< 75 Miles	0
BEVx	Range-extended electric vehicle	ZEV	75 mi ≤ AER ≤ 350 mi	0.5+0.01 x AER
			> 350 miles	4
			< 10 Miles	0
TZEV	Plug-in hybrid	TZEV	10 mi ≤ EAER ≤ 80 mi	0.3+0.01 x EAER
			> 80 miles	1.1
			AER < 10 Miles	0.75
H₂ICE	Hydrogen Internal Combustion Engine Vehicles > 250 miles	TZEV	10 mi ≤ AER ≤ 20 mi	1.05+.01 x AER
			20 miles < AER	1.25

^a ZEV = vehicle that produces zero exhaust emissions of any criteria pollutant (or precursor pollutant) or greenhouse gas under any possible operational modes or conditions. ^b All electric range for battery electric vehicles, hydrogen range for hydrogen vehicles, equivalent all electric range for non-ZEVs with zero-emission capability.

CO₂ / GREENHOUSE GAS / FLIEL CONSUMPTION / ZEV

^o Neighborhood electric vehicle.

CALIFORNIA - GREENHOUSE GAS STANDARDS

History

- California led development of regulation to control greenhouse gases (GHG). First passed in 2002, regulations became effective in January 2006 and phased in from 2009-2016
- In 2010, California adopted regulations such that cars that complied to Federal MY 2012-2016 standard would also comply with CARB standards for the same MYs
- In January 2012, California enacted the Advanced Clean Cars rule that included GHG targets for MY 2017 to 2025 vehicles based on vehicle footprint (in addition to LEV III criteria pollutant rules)

The GHG targets were aligned to federal standards (see table) and vehicles meeting federal targets were 'deemed to comply'.

- In 2019, EPA withdrew the ACC waiver preventing California from regulating GHG
- Subsequently, CARB reached a voluntary agreement with several automakers establishing a nationwide target of 3.7% GHG annual reduction from 2022 to 2026 of which 1% can be met with advanced technology multiplier credits
- In 2021, the EPA restored the ACC waiver granting to California the authority to regulate greenhouse gas emissions directly

Projected 2017-2025 fleet-wide \mbox{CO}_2 and fuel economy compliance levels

Vehicle category		Model year									
		2017	2018	2019	2020	2021	2022	2023	2024	2025	
Passenger Cars	CO ₂ g/mi	212	202	191	182	172	164	157	150	143	
Light-Duty Trucks	CO ₂ g/mi	295	285	277	269	249	237	225	214	203	
Combined Cars & Trucks	CO ₂ g/mi	243	232	222	213	199	190	180	171	163	

EXHAUST
POLLUTANT EMISSIONS
STANDARDS

CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

ON-BOARD DIAGNOSTIC AND MONITORING EVAPORATIVE EMISSIONS STANDARDS

FUELS

L-CATEGORY EMISSIONS STANDARDS

CALIFORNIA - ZERO-EMISSION VEHICLE MANDATE (REVOKED - NOT IN FORCE)

Advanced Clean Cars II (ACC II) - ZEV mandate from 2026-2035

Due to the Congressional resolution passed under the federal Congressional Review Act, revoking the EPA waiver, ACC II is prevented from being implemented. CARB is appealing the legality of the decision and continues to develop its ZEV program. The following description of ACC II is for reference purposes.

The Advanced Clean Cars II rule was adopted in 2022 (CCR 1962.4. Title 13), implementing ZEV targets for model years 2026 onwards reaching 100% in 2035 (see table).

- Fligible ZEVs must have a certified all-electric range (AFR) > 200 miles and meet several other requirements (section (d)(1)). Each vehicle counts as one ZEV for the purposes of this requirement
- PHEVs count as ZEV if they meet several conditions (section (e)(1)(A))
- A PHEV with AER ≥ 70 miles and US06 ≥ 40 miles may count as one towards the manufacturer's annual ZEV requirement
- PHEVs with AER ≥ 43 miles and < 70 miles (from MY 2026 MY 2028 only may count according to the following partial value capped at 0.85:

Vertification Range Value Partial Vehicle Value =

- The manufacturer can claim additional partial ZEV value of 0.15 if USO6 AFR > 10 miles PHFV
- · The total PHEV allowance (contribution of PHEV credits to meeting the ZEV target) can be maximum of 20% of the manufacturer's ZEV annual requirement
- · Environmental Justice (EJ) flexibilities giving extra ZEV credit to manufacturers that take action to help increase affordable access to ZEVs for our priority communities

Percentage Requirement for Calculation of Annual ZEV Requirement

Model year	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035+
General percentage ZEV requirement	26%	34%	43%	51%	61%	76%	82%	88%	94%	100%
Of which, maximum PHEV allowance	5.2%	6.8%	8.4%	10.2%	12.2%	13.2%	16.4%	17.6%	18.8%	20%

CO. / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

PR OF CHINA - FUEL CONSUMPTION STANDARDS FOR PASSENGER CARS

Application of standards

- Passenger car standards apply both to individual vehicle families and to fleet Corporate Average Fuel Consumption (CAFC), evaluated against weight-based fuel consumption (FC) targets
- · Vehicle makers with a CAFC above the target face penalties
- The NEV credit system (see page 107) can be used towards the CAFC regulation for passenger cars
- · CAFC target calculation:

$$\mathsf{T}_{\mathsf{CAFC}} = \frac{\sum_{i=1}^{N} T_i \times Vi}{\sum_{i=1}^{N} V_i}$$

i = serial number of the vehicle family.

 $\rm T_i$ = vehicle fuel consumption target of single family i, which is defined in the table of 'China Fuel Consumption Evaluation Methods and Targets for Passenger Cars, GB 27999, L/100 km'.

V_i = the annual quantity of the single family of vehicle i.

Fuel consumption targets

CAFC may exceed the target (see next page) by a certain percentage each year until the final year (2020 and 2025 for Phase IV and V respectively).

	27999-2 al CAFC				GB 27999-2019 CAFC Phase V Final CAFC target = 4 L/100 km				
2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
134%	128%	120%	110%	100%	123%	120%	115%	108%	100%

EXHAUST POLLUTANT EMISSIONS STANDARDS CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

ON-BOARD
IAGNOSTIC AND
MONITORING

EVAPORATIVE EMISSIONS STANDARDS LS

L-CATEGORY EMISSIONS STANDARDS

PR OF CHINA - FUEL CONSUMPTION STANDARDS FOR PASSENGER CARS

Phase V and VI individual and fleet average fuel consumption targets as a function of curb mass (CM)

Phase V introduced CAFC standards from January 2021 and individual vehicle fuel economy standards from July 2021 based on curb mass (CM).

Targets per vehicle family, Phase V (L/100 km)		CAFC targets, Phase V (L/100 km)		
CM (kg)	Manual transmission	Automatic transmission	Manual transmission	Automatic transmission
CM ≤ 750	5.82	6.27	4.02	4.22
750 < CM ≤ 1,090	0.0041 × (CM - 1,415) + 8.55	0.0042 × (CM - 1,415) + 9.06	4.02	4.22
1,090 < CM ≤ 2,510	0.0041 × (CM - 1,415) + 8.55	0.0042 × (CM - 1,415) + 9.06	0.0018 × (CM - 1,415) + 4.6	0.0018 × (CM - 1,415) + 4.8
2,510 < CM	13.04	13.66	6.57	6.77

Phase VI is planned from January 2026 for both CAFC and individual vehicles°.

CM (kg)	Targets per vehicle family, Phase VI (L/100 km)		CAFC targets, Phase VI (L/100 km)		
Civi (kg)	< 3 rows of seats	≥ 3 rows of seats	< 3 rows of seats	≥ 3 rows of seats	
CM ≤ 1,090	5.90	6.31	2.57	2.71	
1,090 < CM ≤ 2,510	0.0034 × (CM - 1,580) + 7.57	0.0035 × (CM - 1,580) + 8.02	0.0015 × (CM - 1,580) + 3.3	0.0015 × (CM - 1,580) + 3.46	
2,510 < CM	10.73	11.28	4.70	4.84	

^a Annual phase-in percentages 2026-2030: 130%, 124%, 117%, 109%, 100%.

POLLUTANT EMISSIONS
STANDARDS

CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

IAGNOSTIC AND
MONITORING

VAPORATIVE EMISSIONS STANDARDS FUELS

L-CATEGORY EMISSIONS STANDARDS

PR OF CHINA - FUEL CONSUMPTION STANDARDS FOR LIGHT COMMERCIAL VEHICLES 2

Light-duty commercial vehicles (GB 20997-2015)

Maximum fuel consumption standards applicable for N₁ and M₂ vehicles (GVW ≤ 3,500 kg) 1 January 2020 for vehicles in production (certified before 1 January 2018).

N₁ vehicles fuel consumption limit multiple 1.05, if meeting one or multiple criteria:

- a) N₂ box truck
- b) N₂ bucket truck
- c) N₁ All-wheel-drive truck

Fuel consumption targets

Crush Barrer (CBA) Ive	N ₁ vehicles		M₂ vehicles	
Curb Mass (CM), kg	Gasoline (L/100 km)	Diesel (L/100 km)	Gasoline (L/100 km)	Diesel (L/100 km)
CM ≤ 750	5.5	5	5	4.7
750 < CM ≤ 865	5.8	5.2	5.4	5
865 < CM ≤ 980	6.1	5.5	5.8	5.3
980 < CM ≤ 1,090	6.4	5.8	6.2	5.6
1,090 < CM ≤ 1,205	6.7	6.1	6.6	5.9
1,205 < CM ≤ 1,320	7.1	6.4	7	6.2
1,320 < CM ≤ 1,430	7.5	6.7	7.4	6.5
1,430 < CM ≤ 1,540	7.9	7	7.8	6.8
1,540 < CM ≤ 1,660	8.3	7.3	8.2	7.1
1,660 < CM ≤ 1,770	8.7	7.6	8.6	7.4
1,770 < CM ≤ 1,880	9.1	7.9	9	7.7
1,880 < CM ≤ 2,000	9.6	8.3	9.5	8
2,000 < CM ≤ 2,110	10.1	8.7	10	8.4
2,110 < CM ≤ 2,280	10.6	9.1	10.5	8.8
2,280 < CM ≤ 2,510	11.1	9.5	11	9.2
2,510 < CM	11.7	10	11.5	9.6

CO. / GREENHOUSE GAS / FLIEL CONSUMPTION / ZEV

PR OF CHINA - PHASE IV FUEL CONSUMPTION STANDARDS FOR LIGHT COMMERCIAL VEHICLES

Phase IV standards for individual vehicles (GB 20997-2024)

L/100 km targets are to be introduced in January 2026 based on test mass.

Category		Test mass ≤ 1,190 kg	1,190 kg < Test mass ≤ 2,850 kg	Test mass > 2,850 kg
Caraclina	Truck (N ₁)	4.27	0.00263 × (TM - 1,733) + 5.70	8.64
Gasoline	Bus (M ₂)	4.11	0.00270 × (TM - 1,733) + 6.56	8.59
Disease	Truck (N ₁)	3.64	0.00208 × (TM - 2,098) + 4.77	7.09
Diesel	Bus (M ₂)	3.54	0.00202 × (TM - 2,098) + 5.37	6.89

Notes: For vehicles with dump truck configuration, the per-vehicle limits are 5% higher than the limits for trucks

PR OF CHINA - PHASE IV FUEL CONSUMPTION STANDARDS FOR LIGHT COMMERCIAL VEHICLES

Phase IV CAFC standards

L/100 km targets are to be introduced in January 2026 based on test mass (TM).

Category		Test mass ≤ 1,190 kg	1,190 kg < Test mass ≤ 2,850 kg	Test mass > 2,850 kg
Caralina	Truck (N ₁)	6.09	0.00375 × (TM - 1,733) + 8.13	12.32
Gasoline	Bus (M ₂)	5.85	0.00375 × (TM - 1,733) + 8.13	12.25
Disease	Truck (N ₁)	5.19	0.00385 × (TM - 2,098) + 9.35	10.13
Diesel	Bus (M ₂)	5.03	0.00288 × (TM - 2,098) + 7.65	9.82

The targets are introduced according to a phase in based on a percentage of the final target.

			CAFC target = 5 L/100 km		
Ī	2026	2027	2028	2029	2030
	124%	124%	115%	115%	100%

CO₂ / GREENHOUSE GAS / FLIEL CONSUMPTION / ZEV

PR OF CHINA - NEW ENERGY VEHICLES

New energy vehicle (NEV) program and targets

The China New Energy Vehicle (NEV) program (revised 2020 and 2025) requires that credits be produced equivalent to a weighted percent of sales.

NEV credits can be earned for:

- · Plug-in Hybrid Electric Vehicles (PHEV) currently up to 1.6 per vehicle
- Battery Electric Vehicles (BEV) currently up to 5.1 per vehicle. (3.4 maximum base credits with up to 1.5x multiplier for efficient vehicles)
- · Fuel Cell Electric Vehicles (FCEV) currently up to 6 per vehicle

Model year	GB 27999-2019 CAFC III
2019	10%
2020	12%
2021	14%
2022	16%
2023	18%
2024	28%
2025	38%
2026	48%
2027	58%

1 PHFV credit 2024-2025

PHEV receive a credit if both the following conditions are met:

- $\cdot\,$ Fuel Consumption in charge sustaining mode < 70% of phase 5 target
- Electric energy consumption in charge depleting mode is greater than 135% of the electric energy consumption target (E $_{\rm t}$ see next page)

(See PR of China section on $\mbox{CO}_2\mbox{/FE}$ for phase 5 fuel consumption targets).

2. PHEV credit 2026-2027

Same as above with thresholds at 60% and 130% respectively.

3. FCEV credit (2024-2025 and 2026-2027)

Credit = 0.05 x fuel cell rated power (maximum 4).

If fuel cell rated power < 30% of rated power of drive motor or 10 kW Credit = 0.025 x fuel cell rated power (maximum 2).

EXHAUS I POLLUTANT EMISSIONS STANDARDS CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

ON-BOARD
IAGNOSTIC AND
MONITORING

VAPORATIVE EMISSIONS STANDARDS FUELS

L-CATEGORY EMISSIONS STANDARDS

PR OF CHINA - NEW ENERGY VEHICLES

BEV credit 2024 - 2025

BEVs receive a standard credit dependent on all electric ranae (AER): Standard credit (C___)

AER	C _{std}
AER < 100 km	0.0
100 km ≤ AER ≤ 150 km	0.6
150 km ≤ AER	0.0034 x AER + 0.2 (maximum 2.3)

Further multipliers are applied according to energy consumption vs. a target, AER and battery energy density: Total BEV credit = C x F x F x F

Where:

- F = Driving range factor (from 0 to 1)
- F = Power consumption factor (from 0.5 to 1.5)
- F = Energy density factor (from 0 to 1)

See tables on right hand side.

1 BEV credit 2026 - 2027

Same as above except F. maximum 1.2 with stricter ratios and additional factor for efficient cab heating maximum 1.2.

CO. / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

2. Driving range adjustment factor (F₂)

All Electric Range (AER)	R _r
AER < 100 km	0.0
100 km ≤ AER ≤ 150 km	0.7
150 km ≤ AER ≤ 200 km	0.8
200 km ≤ AER ≤ 300 km	0.9
300 km < AER	1.0

3. Electric energy consumption target (E.) 4. Power consumption factor (F.)

Curb Mass (M) (kg)	(E _t) kWh/100 km	Condition	F.
M ≤ 1,000 kg	0.4 + 0.0112 × M	(E, /EEC) < 1	0.5
1,000 kg < M ≤ 1,600 kg	3.81 + 0.0078 x M	1 < (E, /EEC) ≤ 1.5	(E, /EEC)
1,600 kg < M	8.6 + 0.0048 x M	1.5 < (E _t /EEC)	1.5

5. Energy density adjustment coefficient (F.)

Battery Energy Density (D)	B _r
D < 90 Wh/kg	0
90 Wh/kg ≤ D < 105 Wh/kg	0.8
105 Wh/kg ≤ D < 125 Wh/kg	0.9
125 Wh/kg ≤ D	1

INDIA - CAFE NORMS

Corporate average fuel economy

Corporate Average Fuel Efficiency (CAFE) norms were first notified by the Government in 2015, under the Energy Conservation Act, 2001 to mitigate fuel consumption by lowering CO₂ emissions.

These norms are applicable for petrol, diesel, liquefied petroleum gas (LPG), CNG, hybrid, and electric passenger vehicles with gross vehicle weight (GVW) < 3,500 kg.

It relates the gasoline equivalent corporate average fuel consumption (in liters/100 km) to the corporate average kerb weight of all the cars sold by any manufacturer in a fiscal year.

These standards were introduced in two phases:

	CAFE stage I	CAFE stage II		
Effective year	2017-18 onwards	2022-23 onwards		
Average kerb weight (kg)	1,037	1,082		
Fuel Consumption (L/100 km)	< 5.5	< 4.78		
Average CO ₂ emissions (grams of CO ₂ /km)	< 130	< 113		

Each manufacturer shall comply with energy consumption standard in terms of Average Fuel Consumption Standards as provided in the table below:

Where W is the Weighted average of unladen mass in kilogram (kg).

Year	Test cycle	Average fuel consumption standard (petrol equivalent L/100 km)
Fiscal year from 2017/18 to 2021/22	MIDC	0.0024 x (W - 1,037) + 5.4922
Fiscal year from 2022/23 onwards	MIDC	0.002 x (W - 1,145) + 4.7694

The ${\rm CO_2}$ (g/km) measured over the MIDC cycle, multiplied by a factor taking into account the fuel type, gives the actual fuel consumption FC.

Type of fuel	FC (L/100 km for petrol, LPG and diesel, kg/100 km for CNG)	Conversion factor to petrol equivalent
Petrol	0.04217 x CO ₂	-
Diesel	0.03776 x CO ₂	1.1168
LPG	0.06150 x CO ₂	0.6857
CNG	0.03647 x CO ₂	1.1563
Electricity	(FC in kWh/100 km) x CO ₂	0.1028

EXHAUST POLLUTANT EMISSIONS STANDARDS CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

ON-BOARD
DIAGNOSTIC AND
MONITORING

EVAPORATIVE EMISSIONS STANDARDS FUELS

EMISSIONS STANDARDS

CURRENT

1. Super credits

For the purpose of calculating the Corporate Average CO₂ Performance (P), a manufacturer may consider using the volume derogation factor given below, for each of its models:

	Vehicle types	Volume derogation factor for super credit
1	Strong Hybrid Electric Vehicles	2
2	Plug-in Hybrid Electric Vehicles / Range Extender Hybrid Electric Vehicles	2.5
3	Pure Electric Vehicles Hydrogen (FCEV)	3

2. CO2 reducing technologies

The vehicle manufacturer, may use the following factors for the following CO2 reducing technologies in calculating the Corporate Average CO₂ Performance.

The technology factor for vehicles using multiple technologies shall be the multiplication of individual factors.

Derogation factors for CO₂ reduction technologies

CO₂ reducing technologies	Derogation factor on CO ₂ emission
Regenerative braking	0.98
Start-Stop system	0.98
Tyre pressure monitoring system	0.98
6 or more speed transmission	0.98

INDIA - CAFE NORMS

Development of CAFE III standards (September 2025 draft from the Bureau of Energy Efficiency)

Each manufacturer of four-wheeled motor vehicles shall comply with energy consumption standards in terms of Average Fuel Consumption Standards as provided below:

The Annual Average Fuel Consumption Standard = a x (W - b) + c.

W = weighted average of unladen mass in kilogram (kg) of all said motor vehicles, manufactured or imported for sale by the manufacturer in the reporting period.

The test cycle remains MIDC but testing on iWLTC will be required when notified by MoRTH.

Other factors, see table:

Year	FY 2027-2028	FY 2028-2029	FY 2029-2030	FY 2030-2031	FY 2031-2032		
a (liters per 100 kilometers)	0.002						
b (kilograms)	1170						
c (liters per 100 kilometers per kilograms)	3.7264	3.5737	3.4573	3.2224	3.0139		
c in CO2 equivalent (g/km)	88.4	84.7	82.0	76.4	71.5		
Average Fuel Consumption Standard for Manufacturer in petrol equivalent (liters per 100 kilometers)	[0.002 × (W - 1170) + c]						

The proposal maintains the derogation factors on the previous page and adds a 1.5 factor for Flex Fuel Ethanol Vehicles.

POLLUTANT EMISSIONS
STANDARDS

CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

ON-BOARD
DIAGNOSTIC AND
MONITORING

EVAPORATIVE EMISSIONS STANDARDS

FUELS

EMISSIONS STANDARDS

JAPAN - CORPORATE AVERAGE FUEL ECONOMY STANDARDS

2015 fuel economy standard

The regulation considers diesel and gasoline vehicles together.

Test cycle

FE JC08 total = 1 / (0.25/FE JC08_{cold} + 0.75/FE JC08_{bot})

A correction factor is applied to account for the heating value of fuels other than gasoline:

- · Diesel FE = FE JC08 total / 1.1
- LPG FE = FE JC08 total / 0.78

Passenger Cars - Targets for 2015

_		_						
Ref. mass (kg)	≤ 600	601- 740	741- 855	856- 970	971- 1,080	1,081- 1,195	1,195- 1,310	1,311- 1,420
km/L	22.5	21.8	21	20.8	20.5	18.7	17.2	15.8
Ref. mass (kg)	1,421- 1,530	1,531- 1,650	1,651- 1,760	1,761- 1,870	1,871- 1,990	1,991- 2,100	2,101- 2,270	≥ 2,271
km/L	14.4	13.2	12.2	11.1	10.2	9.4	8.7	7.4

2020 fuel economy standard

The 2020 standard represents a 19.6% increase in fuel economy overall with the same limit structure.

Passenger Cars - Targets for 2015

. asserige		.a.got	3 101 20					
Ref. mass (kg)	≤ 740	741- 855	856- 970	971- 1,080	1,081- 1,195	1,196- 1,310	1,311- 1,420	1,421- 1,530
km/L	24.6	24.5	23.7	23.4	21.8	20.3	19	17.6
Ref. mass (kg)	1,531- 1,650	1,651- 1,760	1,761- 1,870	1,871- 1,990	1,991- 2,100	2,101- 2,270	≥ 2,271	
km/L	16.5	15.4	14.4	13.5	12.7	11.9	10.6	

EXHAUST POLLUTANT EMISSIONS STANDARDS CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

ON-BOARD
DIAGNOSTIC AND
MONITORING

EVAPORATIVE EMISSIONS STANDARDS L-CAT EMIS

JAPAN - CORPORATE AVERAGE FUEL ECONOMY STANDARDS

2030 fuel economy standard

The 2030 standard requires a fleet average fuel economy of 25.4 km/L. a 25% increase compared to the 2020 standard.

The structure is maintained but the discreet weight bins are replaced by a continuous weight-dependent curve (right-hand side).

The test cycle changes to WLTC.

Electric vehicles are included with FE = 6.750 / EC. where:

EC = AC power consumption (Wh/km).

Plua-in hybrid fuel economy is calculated as:

$$\frac{1}{\text{UF x} \left(\frac{1}{\text{FE}_{CD}} + \frac{1}{6.75 \times \frac{R_{CD}}{E_1}}\right) + \frac{1 - \text{UF}}{\text{FE}_{CS}}}$$

UF = utility factor (see chart).

FE_{co} / FE_{cs} = fuel economy in charge depleting / charge sustaining mode. R_{CD} = electric vehicle range.

 E_1 = energy consumption per charge.

2030 FE target curve

M below 2.759 kg: FE target = $-2.47 \times 10^{-6} \times M^2 - 8.52 \times 10^{-4} \times M + 30.65$. M above 2.759 kg; FE = 9.5.

CO. / GREENHOUSE GAS / FLIFE CONSUMPTION / ZEV

Corporate average fuel consumption and GHG limits

South Korea applies a dual system - Fuel Economy (CAFE) by MOTIE (Ministry of Trade, Industry and Energy) and GHG emissions standards by the Ministry of Environment. Both are based on corporate average values for each automaker. These regulations apply to passenger cars and light commercial vehicles (≤ 3.5 tonnes. ≤ 15 seats), Zero-emission vehicles (ZEVs) such as BEVs and FCEVs receive compliance credits under separate calculation rules.

Fuel consumption and GHG limit values

Standard	Vehicle category	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	Remark
	Passenger car, Van (≤ 10 people)	24.3	24.3	24.4	25.2	26	27	27.9	29	30.9	33.1	
FC in km/L	Van (11 -1 5 people), Small Truck (≤ 3.5 tonne)	15.2	15.2	15.4	15.7	16	16	16.3	16.6	16.9	17.3	Not Fixed (Guideline)
	Passenger car, Van (≤ 10 people)	97	97	95	92	89	86	83	80	75	70	
GHG in g/km	Van (11 - 15 people), Small Truck (≤ 3.5 tonne)	166	166	164	161	158	158	155	152	149	146	Released

Brazilian Vehicle Labeling Program (PBEV)

- Coordinated by Inmetro, in partnership with the Ministry of Mines and Energy (MME), the PBEV evaluates and classifies the energy efficiency of new vehicles sold in Brazil
- The program is voluntary for vehicle manufacturers, but most of them adhere to it and renew their participation annually
- The National Energy Conservation Label (ENCE) is affixed to the vehicles' windows and includes the following information:
 - Rating: Varies from A (most efficient) to E (least efficient), for both in-category and overall comparison. The most efficient rating is represented by the color green, and the least efficient by red (see next page)
 - Fuel consumption: Indicates the vehicle's average consumption in km/liter, both in the city and on the highway, with different fuels (gasoline, ethanol, etc.)
 - CO_2 emissions: Details the carbon dioxide (CO_2) emissions for combustion vehicles
 - Range: For electric and hybrid vehicles, it informs the range in distance covered with a battery charge

Conpet Energy Efficiency Seal

- The Conpet Seal is awarded to vehicles that obtain the best rating (usually an "A" grade) on the Inmetro label
- The label classifies all participating PBEV vehicles, while the seal is a special recognition for the most efficient in their category
- A vehicle with a Conpet Seal guarantees the owner greater fuel savings, as its energy consumption is lower. In addition, the seal contributes to awareness about the efficient use of fossil fuels
- The seal is an initiative of the National Program for the Rationalization of the Use of Petroleum and Natural Gas Derivatives (Conpet)

POLLUTANT EMISSIONS
STANDARDS

CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

DIAGNOSTIC AND MONITORING EVAPORATIVE EMISSIONS STANDARDS

FUELS

EMISSIONS STANDARDS

Energetic fuel consumption calculations - basics

- 1a.Measure E20 + E100 Urban cycle / City cycle / EPA75 = (norm ABNT NBR 660)
- 1b. Measure E20 + E100 Highway cycle (norm ABNT NBR 7024)
- Calculate final fuel consumption = measured fuel consumption x factor (Portaria n 377)
- 3. Calculate combined fuel consumption for E22 and E100 = 55% Urban + 45% Highway
- Calculated energetic E22 and E100 fuel consumption in MJ/km based on MJ/kg using the follow factors to convert from volumetric consumption (L/km or to be determined for CNG):

Physical characteristics	Unit	E00	E22	E100	Unit	CNG
Calorific Power	MJ/kg	43.06	38.92	24.8	MJ/kg	48.74
Density	kg/L	0.735	0.745	0.807	kg/m³	0.723
Energy Density	MJ/L	31.65	28.99	20.01	MJ/m³	35.24

5. Calculate final energetic fuel consumption in MJ/km, being is the average of the combined E20 and E100 MJ/km

Vehicle Labeling Program

The Brazilian Vehicle Labeling Program categorizes vehicles into efficiency classes A to E based on their energetic consumption and vehicle segment.

Energetic consumption (EC) ranges for categories A to E (MJ/kg)

PBE classification	Subcompact	Medium	Compact	Large				
А	EC ≤ 1.60	EC ≤ 1.76	EC ≤ 1.76	EC ≤ 1.95				
В	1.60 < EC ≤ 1.67	1.76 < EC ≤ 1.84	1.76 < EC ≤ 1.84	1.95 < EC ≤ 2.04				
С	1.67 < EC ≤ 1.78	1.84 < EC ≤ 1.90	1.84 < EC ≤ 1.94	2.04 < EC ≤ 2.24				
D	1.78 < EC ≤ 1.92	1.90 < EC ≤ 2.00	1.94 < EC ≤ 2.04	2.24 < EC ≤ 2.53				
E	EC > 1.92	EC > 2.00	EC > 2.04	EC > 2.53				

UNITED KINGDOM

Zero-emission vehicle (ZEV) mandate

The ZEV mandate, introduced via the Vehicle Emissions Tradina Scheme (VETS) legislation in 2023, sets annual targets for the percentage of each manufacturer's sales of new passenger cars (PC) and light commercial vehicles (LCV) that must be ZEVs. Only battery electric and fuel cell electric vehicles count towards the ZEV requirement.

From 2024 to 2026, part of the ZEV requirement in each year can be borrowed from future years, and repaid by overcompliance with the targets by 2027 at the latest.

Manufacturers can partially comply with the ZEV requirement by a achieving non-ZEV CO2 fleet average lower than a baseline equal to the higher of their actual 2021 fleet average CO₂ or their 2021 fleet average target.

Non-compliance penalties are £15.000 / £18.000 for each PC or LDV respectively below the target in each year.

The following table shows the legislated targets:

Year	2024	2025	2026	2027	2028	2029	2030
PC	22%	28%	33%	38%	52%	66%	80%
LCV	10%	16%	24%	34%	46%	58%	70%

Indicative targets to be set in future legislation

Year	2031	2032	2033	2034	2035
PC	84%	88%	92%	96%	100%
LCV	76%	82%	88%	94%	100%

In December 2024 the Department for Transport started a consultation on proposed amendments to introduce additional flexibilities and reduce the penalties, maintaining the headline targets, expected to be adopted by the end of 2025.

OTHER AREAS OF THE WORLD

Australia	Mandatory CO ₂ emissions standards (New Vehicle Efficiency Standard - NVES) for light duty vehicles apply from 2025: Passenger Cars - CO ₂ g/km: 141 in 2025 / 175 in 2026 / 92 in 2027 / 68 in 2028 / 58 in 2029 LCV - CO ₂ g/km: 210 in 2025 / 180 in 2026 / 150 in 2027 / 122 in 2028 / 110 in 2029 Based on NEDC CO ₂ measurement 1treview planned in 2026 - targets for 2030 - 2035 could be considered
Canada	In place from MY 2017 - Adoption in 2014; requirement of 5% annual reduction in CO ₂ -equivalent per mile for passenger cars from 2017 to 2025 (3.5% the first 3 years, then 5% for Light trucks)
Mexico	Phase 2 CO ₂ emissions standard (NOM 163) for LDVs, enacted in January 2024, is setting g CO ₂ /km targets for 2025-2027 for Manufacturers: The annual targets are set to achieve 89 g CO ₂ /km for passenger cars and 131 g CO ₂ /km for LCVs by 2027 Mexico announced a target of 50% of new LDV sales to be zero-emission by 2030
New Zealand	Annual GHG standards for new LDV imported into the country: LDV – CO ₂ (g/km): 112.6 in 2025 / 84.5 in 2026 / 63.3 in 2027 LCV – CO ₂ (g/km): 155 in 2025 / 116.2 in 2026 / 87.2 in 2027
South Africa	Vehicle tax introduced in 2010 based on CO ₂ emissions of each vehicle model – payed by manufacturer or importer
Taiwan	Fuel economy standards have been in place since August 2014 The current one (2022) is based on "Energy Efficiency Standards", function of engine displacements and vehicle categories, for manufactured or imported vehicles

CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV

EUROPEAN UNION - EURO 3-4 OBD

European on-board diagnostics

OBD identifies malfunctions and deterioration that cause emissions to exceed thresholds. Driver is notified upon detection.

The Euro OBD stages are presented in chronological order to show the development of their provisions over time.

Furo 3-4

- · OBD based on European revised urban + extra-urban cycle (NECD)
- · Onboard diagnostics was first introduced with Euro 3 emission limits $(M_1 \le 2.5 \text{ t GVW}, N_1 \text{ CL 1 type approval 1/2000, first registration 1/2001})$
- · No OBD Euro 4 step was foreseen

EOBD Thresholds Euro 3-4 (a/km)

Vehicle class	co		Н	С	N	PM	
venicie ciass	PI	CI	PI	CI	PI	CI	CI
$M_1 \le 2.5 t GVW, N_1 CL 1$	3.20	3.20	0.40	0.40	0.60	1.20	0.18
N ₁ CL 2	5.80	4.00	0.50	0.50	0.70	1.60	0.23
N_1 CL3, $M_1 > 2.5 \text{ t GVW}$	7.30	4.80	0.60	0.60	0.80	1.90	0.28

PI = positive ignition engines. CI = compression ignition engines.

Monitoring greas according to engine type

Monitor area	PI	CI
Catalyst converter (gasoline THC only)	Х	х
Engine misfire	Х	
Oxygen sensor deterioration	Х	
Particulate trap		х
Fuel injection system	х	х
Circuit continuity of all emission related powertrain components	х	×
Any other emissions related components or systems (air flow, EGR, etc) if malfunction causes increase above thresholds	х	×

EUROPEAN UNION - EURO 5 OBD

Euro 5 OBD requirements

UN Rea 83. Annex 11 requirements applicable, in addition to following points: as outlined in 70/220FC: 715/2007FC and 692/2008FC.

Thresholds Euro 5 in mg/km

Vehicle	Implementation	Implementation CO		NMHC		NOx		PM	
class	date	PI	CI	PI	CI	PI	CI	Pla	CIÞ
M, N ₁ CL 1	TA 9/2009 FR 9/2011	1,900	1,900	250	320	300	540		
N₁ CL 2	TA 9/2010	3,400	2,400	330	360	375	705	50	50
N ₁ CL 3, N ₂	FR 9/2012	4,300	2,800	400	400	410	840		

^a For GDI engines only.

Expanded Monitorina areas startina Euro 5

EGR system efficiency monitoring EGR flow and cooler monitoring Catalyst against NMHCb Catalyst against NOx (> Euro 5+)cd NOx aftertreatment device with or without reagent efficiency monitoring All O₂ Sensors to monitor catalyst (in addition to front sensor) PM monitoring^o

Access to ORD information

IUPR (> Euro 5+)d

- Similar to UN Rea 83 requirements
- Access with generic scan tool, complying with ISO 15031-5 document
- Functional aspects of OBD systems
 - Technical requirements are similar to UN Rea 83
- Starting Euro 6, on-board and off-board communication standard: ISO 15765-4 (CAN)

b 80 mg/km until 1 September 2011, for M and N vehicles with RM > 1.760 kg.

^o Mandatory total failure or removal detection if emission limit exceeded for DOC. DeNOx catalysts and DPF.

d Euro 5+ OBD TA: 1 September 2011 / FR: 1 January 2014.

EUROPEAN UNION - EURO 6 OBD

Euro 6 OBD requirements

Thresholds Euro 5 in mg/km

	Implementation	mplementation CO		NMHC		NOx		PM	
Euro 6-1	date	PI	CI	PI	CI	PI	CI	PI	CI
M, N ₁ CL 1	NT 9/2014 NV 9/2015	1,900	1,750	170	290	150	180	25	25
N ₁ CL 2	NT 9/2015	3,400	2,200	225	320	190	220	25	25
N ₁ CL 3, N ₂	NV 9/2016	4,300	2,500	270	350	210	280	30	30
Euro 6-2		PI	CI	PI	CI	PI	CI	PI	CI
M, N ₁ CL 1	NT 9/2017 NV 9/2018	1,900	1,750	170	290	90	140	12	12
N ₁ CL 2	NT 9/2018	3,400	2,200	225	320	110	180	12	12
N ₁ CL 3, N ₂	NV 9/2019	4,300	2,500	270	350	120	220	12	12

Demonstration Cycle

- September 2017 to September 2019-OEM is flexible to choose NEDC or WLTP cycle for OBD threshold part creation and demonstration
- · Beyond September 2019 WLTC only

123

EUROPEAN UNION

Additional requirement starting Euro 5+a:

In Use Performance Ratio monitoring (IUPR)

IUPR indicates how often a specific monitor (diagnostic function) is operating relative to vehicle operation:

 $IUPR = \frac{Numerator_{M}}{Denominator_{M}}$

 ${\bf Numerator_M}$ measures number of times a monitoring function has run and a malfunction could have been detected.

 $\textbf{Denominator}_{\texttt{M}}$ measures the number of vehicle driving events taking into account special conditions.

^a Euro 5+ OBD interim step with NT: 1 September 2011 / NV: 1 January 2014.

EUROPEAN UNION

Based on UNR154

IUPR(m) = Numerator(m) / Denominator(m)

(m) correspond to a monitor

Numerator of a specific monitor (m) is a counter indicating the number of times a vehicle has been operated such that all monitoring conditions necessary for that specific monitor to detect a malfunction have been encountered.

The general denominator is a counter indicating the number of times a vehicle has been operated, taking into account general conditions:

- \cdot Cumulative time since engine start is greater than or equal to 600 seconds while at an elevation of less than 2,440 m above sea level and at an ambient temperature of greater than or equal to -7 °C
- Cumulative vehicle operation at or above 40 km/h occurs for greater than or equal to 300 seconds while at an elevation of less than 2,440 m above sea level and at an ambient temperature of greater than or equal to -7 °C

 Continuous vehicle operation at idle (i.e. accelerator pedal release by driver and vehicle speed less than or equal to 1.6 km/h) for greater than or equal to 30 seconds while at an elevation of less than 2,440 m above sea level and at an ambient temperature of greater than or equal to -7 °C

The numerator and denominator can be incremented only by +1 into a one driving cycle.

The value of minimum in-use-performance ratio IUPR(min) is 0.1 for all monitors.

Additionally, some specific conditions can be added for each monitor:

- System or actuator, VVT and system operating exclusively during cold start: Should be commanded "on" for time greater than 10 seconds
- DPF and DOC monitoring: 800 cumulative kilometer since the last incrementation of the denominator
- Boost monitor: general denominator condition plus boost pressure control system is active for a time greater than or equal to 15 seconds

EUROPEAN UNION

IUPR thresholds

	Euro 5a	Euro 5b	Euro 5b+	Euro	o 6b	Euro	6c/d	Comments
	Euro sa	Euro Sb	Euro Sb+	PI	CI	PI	CI	Comments
Catalyst	-	-	0.1	0.336	0.336	0.336	0.336	
EGR system	-	-	0.1	0.336	0.336	0.336	0.336	
O ₂ sensors	-	-	0.1	0.336	0.336	0.336	0.336	
NOx sensors	-	-	0.1	0.336	0.336	0.336	0.336	
NOx aftertreatment system	-	-	0.1	0.336	0.1	0.336	0.336	
Secondary air	-	-	0.1	0.26	N/A	0.26	N/A	
Cold start diagnostics	-	-	-	0.26	0.26	0.26	0.26	Incremented only after cold start < 35°C coolant
VVT system	-	-	0.1	0.336	0.336	0.336	0.336	
Boost pressure control	-	-	0.1 (only CI)	-	0.336	-	0.336	Normal denominator + boost control active > 15 sec.
EVAP system	-	-	0.1	0.52	N/A	0.52	N/A	
Diesel oxidation catalyst	-	-	0.1	0.336	0.336°	0.336	0.336°	
Particulate filter	-	-	0.1 (only CI)	-	0.336°	-	0.336°	

^a Additional monitoring requirement of total failure or removal.

EUROPEAN UNION - EURO 7 OBD AND OBM

Euro 7 OBD and OBM requirements

Euro 7 emissions limits and corresponding thresholds (mg/km) for OBD and OBM (new - see below)

	С	0	NMHC		N	Эx	PM	
	PI	CI	PI	CI	PI	CI	PI	CI
Emission limits	1,000	500	68	170 (NOx + HC)	60	80	4.5	4.5
OBD Limits	1,900	1,750	170	290	90	140	12	12
OBM Limits	N/A	N/A	N/A	N/A	150	200	11.25	11.25

Euro 7 requires monitoring of tailpipe emissions:

- 1. OBD regulation: equivalent to Euro 6 and must comply with UNR 154 $\,$
- 2. On-board monitoring (OBM): Measurement of tailpipe emissions for NOx and PM and NH $_{\! 3}$ (only HD)

Euro 7 OBM regulation is split in two parts:

- a. Vehicle level:
 - i) Provide instantaneous OBM data at 1 Hz on OBD port (Emissions measurement and environmental conditions)
 - ii) Memorize emissions results of the last 10 trips
 - iii) Memorize emissions results for vehicle life

- b) Type approval level:
 - i) Vehicle must report OBM data for trips randomly selected
 - ii) OBM selected data must be sent Over the Air periodically
 - iii) OEM has to provide OBM data to authorities annually
- 3. When tailpipe emissions exceed 2.5 times the standard emission limits, Excess Exhaust Emissions Driver Warning System (EEEDWS) must be activated

US AND CALIFORNIA - EPA OBD II

US on-board diagnostics

EPA Tier 3 requirements are harmonized with CARB requirements. Minor exceptions are outlined below.

FPA harmonization final rule: Conditions for malfunction in each monitor area

Monitor area	Condition for malfunction
Catalysts Engine Misfire, O ₂ Sensors	OBD Threshold = 1.5 x standard measured on FTP test
EVAP System	Leakage equivalent to a 0.020" hole
EPA Tier 3 Comments	EPA Tier 3 requires that vehicle must comply with CARB OBD II regulations by 2017 MY except for the following exceptions: Demonstration of crankshaft/camshaft alignment is only required for VVT equipped vehicles

Monitoring requirements and conditions for malfunction in each monitor area for all vehicles (from MY 2015)

Monitor area	Malfunction criteria
Engine Cooling System - Thermostat	Engine coolant temperature does not reach the following within Executive Officer approved time: - Within 20°F of normal operating temp. (may use higher threshold if < 50% emissions increase) - Highest temp. required by the OBD system to enable other monitors - For 30% of MY 2019, 60% of MY 2020, and 100% of MY 2021. Engine coolant temperature reaches the thermostat target, but then
	subsequently drops. May disable monitor when IAT < 20°C, engine coolant temperature at startup is 35°F less than malfunction threshold, or during conditions cause false results
	(The manufacturer must submit a monitoring plan for systems that make use of more than one sensor to indicate engine temperature) - Lack of circuit continuity
Engine Cooling System - Engine Coolant Temperature Sensor	Time to reach feedback enable temp. exceeds: Gasoline Engines: 2 min. for start-up temp. up to 15°F below closed-loop threshold. 5 min. for start-up temp. between 15-35°F below closed-loop threshold (applies to stoichiometric feedback for 30% of fleet in MY 2019, 60% in MY 2020, 100% in MY 2021, manufacturer may choose for remainder of fleet) Diesel Engines: Manufacturer-defined (and Executive Officer approved) time limit (May suspend/delay timer for conditions that could lead to false dicanosis)
·	Stuck in range below the highest min. enable temp. required by other monitors
	Stuck in range above the lowest max, enable temp, required by other monitors (exemption allowed: temp, gauge is based on same sensor and indicates overheat)

Monitoring requirements and conditions for malfunction in each monitor area for all vehicles (cont.)

Monitor area	Malfunction criteria (and/or system requirements)
	· Disconnection of CV system between Crankcase and CV Valve and/or CV Valve and Intake Ducting
Crankcase Ventilation (CV)	· For 20% of MY 2023, 50% of MY 2024, and 100% of MY 2025+ vehicles: leak in CV system (greater than the smallest internal hose cross-section) between Crankcase and CV Valve and/or CV Valve and Intake Ducting.
- Includes all CV- related external tubing/hoses	Exemptions may apply with Exec. Officer approval for systems where vehicle operator is certain to respond or where disconnection or leak of a monitored portion connection between: Crankcase and CV Valve, when tubing is used such that it is resistant to deterioration or disconnection, difficult to remove relative to connection between CV Valve and Intake, and not part of non-CV repair/maintenance CV Valve and Intake, if it causes the vehicle to stall, or is unlikely due to CV design being integral to the induction system (no tubing, hoses, etc.)
	(System requirements:
	· Monitoring of any input or output component that can impact emissions under any reasonable driving condition
	Those components/systems that affect only engine mechanical or electrical load (not related to fuel, air, or emissions control) are only to be monitored if they are used by any other system or component monitor
Comprehensive Components	For hybrid vehicles, monitoring requires Exec. Officer approval: manufacturers must monitor components that are emissions related and/or are used as inputs to OBD monitor(s), except for: The following systems if they do not meet either of the 2 conditions above: Energy Storage, Thermal Management, Regenerative Braking, Drive Motor, Generator, Plug-In ESS charger Hybrid electronic components use for inverter thermal management that are commanded solely by the driver
	Monitoring not required when both of the following are met for the component: Molfunctions may not cause emissions to increase by: 25% or more (PC/LDT SULEV II); 15% or more (all other vehicles) The component or system is not used as part of another diagnostic strategy)

Monitoring requirements and conditions for malfunction in each monitor area for all vehicles (cont.)

Monitor area	Malfunction criteria
	· Lack of circuit continuity or loss of communication (for digital inputs)
	· Out of 'normal' range
Comprehensive	· Irrational sensor value (2-sided monitoring)
Components - Input Components	 Components used for emission control strategies not specifically addressed by CARB regulations: Failures that cause the strategy not to operate in its intended manner (delayed enable, erroneous exit, authority limit)
	 Camshaft/Crankshaft Position Monitoring (for engines requiring precise cam/crank alignment with sensors on both shafts): Alignment malfunction of 1 tooth (or more if no emissions impact): MY 2006-2018 = VVT with beit/chain; MY 2019+ = with or without beit/chain
	· Improper functional response, as feasible
	· Circuit continuity faults
Comprehensive Components	 Idle Control System (gasoline engines with monitoring strategies based on deviation from target idle speed): Speed control cannot maintain within 200 prm above or 100 prm below the target idle speed Speed control cannot maintain within the smallest engine speed tolerance range for enabling any other monitor
- Output Components	For diesel Engines
	Idle Control System: Speed control cannot maintain within +/- 30% of target speed Speed control cannot maintain within +/- 30% of target speed tolerance range for enabling any other monitor Idle control cannot achieve the target idle speed with fuel injection quantity within (smallest quantity tolerance range for enabling other monitors) OR (+/-50% of properly functioning quantity)

Monitoring requirements and conditions for malfunction in each monitor area for all vehicles (cont.)

Monitor area	Malfunction criteria
Comprehensive Components - Output Components	- Detection of a Stall event (20% of 2026, 50% of 2027, 100% of 2028+): - Within 20 seconds of engine start, where fuel level ≥ 15% nominal capacity - Fault codes must distinguish Cold Start fault from other engine conditions
	Glow Plugs/Intoke Air Heaters: Improper functional response Circuit continuity faults Improper current and voltage drop Single glow plug no longer operates in manufacturer's limits
(cont.)	· Wait to start' Lamp: failures that prevent illumination
	 Components used for emission control strategies not specifically addressed by CARB regulations: Failures that cause the strategy not to operate in its intended manner (delayed enable, erroneous exit, authority limit)
	Tolerance Compensation: improper compensation being applied by controller for connected hardware, with no monitoring required if < 15% emission increase AND < full useful life standard under test cycle (Exec. Officer review / approval required)

Monitoring requirements and conditions for malfunction in each monitor area for all vehicles (cont.)

Monitor area	Malfunction criteria
	Minimum performance ratios required: • 0.100 for Diesel Cold Start Emission Reduction Strategy • 0.260 for secondary air system, cold start monitors, and evaporative 0.020" leak • 0.336 for catalyst, oxygen sensors, EGR, VVT, high load purge flow, and remainder • 0.520 for low load purge flow, and evaporative 0.040" leak
	PM Filter Performance: • 0.200 (PC, LDT, MDPV chassis cert.)
In-Use Performance Ratio	Interim year allowances: PC, LDT, MDPV (chassis cert.): to 2021 = 0.100, to 2025 = 0.15, to 2028 = (0.336 for Option 1, 0.150 for Option 2)
	Exceptions: • Plug-In Hybrid Vehicles: through 2019 MY, minimum ratio = 0.100 for those monitors requiring engine run operation • Engine Certified MD Vehicles (2016-2018 MY) as well as Chassis Certified LD, MD and Passenger Cars (2019-2021 MY): min. ratio = 0.100 for Diesel PM filter performance and missing substrate (only if denominator 500 mi criteria not utilized) • OBD system must track and report Ratio information (Numerators/Denominators) for the following: • Gasoline: catalyst, exhaust gas sensors, evaporative 0.020" leak, EGR/VVT, secondary air system • Diesel: NOx adsorber, NMHC catalyst, PM Filter, boost pressure control • Fuel system cylinder imbalance

OBD II gasoline emissions thresholds (LEV III)

Exhaust standards		Monitor thresholds				Catalyst monitor thresholds	
Vehicle Type	Vehicle Emission Category	NMOG + NOx Mult.º	CO Mult.	PM Mult.	PM (mg/mi)	NMOG + NOx Mult.	
Passenger cars, Light- Duty Trucks and Chassis Certified MDPVs	LEV160 / ULEV125	1.50	1.50 2.50			1.75	
	ULEV70 / ULEV50	2.00		1.50	N/A	17.50°	2.00
	SULEV30 / SULEV20 ^b	2.50				2.50	

^a Applies to 2019 and subsequent MY vehicles.

Mult. = Multiplier to be used with the applicable standard (e.g. 2.0 times the NMOG+NOx standard).

b Manufacturer shall use the 2.5 times NMOG+NOx multiplier for vehicles not using the provision of section (e) (17.1.5).

^c Monitor threshold except catalyst.

CARR allows relaxed ORD standards for EPA Tier 2 / Tier 3

Upon request from a manufacturer, CARB allows for the possibility to provide relaxed emission standards for Tier 2 and Tier 3 federal tailpipe emissions standards (aasoline and diesel).

Federal Tier 2 (Bins 3 or 4)

Manufacturers shall utilize the ULEV II vehicle NMOG and CO malfunction criteria (e.g. 1.5 x Bin 3 or Bin 4 NMOG and CO stds.) and the PC/LDT SULEV II vehicle NOx malfunction criteria (e.g. 2.5 x Bin 3 or Bin NOx stds.) (as defined in 40 CFR 86.1811-04, 5 August 2015).

Federal Tier 3 (Bins 85 or 110)

Manufacturers shall utilize the following malfunction criteria in accordance with the following table (with the NMOG+NOx and CO multipliers to be used with the applicable standard (e.g. 2 x NMOG+NOx std.) (as defined in 40 CFR 86.1811-17, 5 August 2015).

Throughold multiplians and throughold for Tipy 7 relayed standard

Threshold multipliers and threshold for the offeraked standard					
Tier 3 (Bins 85 or 110)	NMOG +NOx mult.	CO mult.	PM mult.	PM threshold (mg/mi)	
	Gasoline				
Monitors (except for catalyst)	1.85	1.50	N/A	17.50°	
Catalyst monitor	2.00	N/A	N/A	N/A	
	Diesel				
Monitors ^a	1.85	1.50	2.00	N/A	
Aftertreatment monitors ^b	2.00	1.50°	2.00°	N/A	
PM filter performance monitor	1.85°	1.50°	N/A	17.50	

Applies to (f) (3.2.5), (f)(4)-(f)(7), (f)(9.2.2), (f)(72)-(f)(73).

b Applies to (f) (1)-(f)(2), (f)(8), and (f)(9,2,4)(A),

Applies to MY 2019 onwards.

Monitoring requirements and conditions for malfunction in each monitor area for gasoline vehicles

Monitor area	Malfunction criteria
EGR (low + high flow rate) - Sec. Air (low flow rate)	Thresholds: for Non-LEV III = 1.5 x std; For LEV III = 0 Exception for increased rate monitoring when deterioration not detectable off-idle and results in immediate stall at idle Monitoring required while control strategy is normally activated Failure detected when control requesting flows below authority limit
Fuel System	Fuel delivery system: For non-LEV III vehicles = 1.5 x std (all constituents); for LEV III = a RO ₂ Sensor Feedback Control: for Non-LEV III vehicles = 1.5 x std (all constituents); for LEV III = a A/F ratio for one (or more) cylinders different due to cylinder specific issue (e.g. fuel injector, individual cam lift, etc.) For Non-LEV III vehicles = 1.5 x std For LEV III vehicles: LEV160, ULEV125 = a ULEV50/70 = For 2014-2018 3x std; For 2019+ = a ULEV50/70 = For 2014-2018 4x std; For 2019+ = a Control max. authority reached (if based on secondary oxygen sensor, also allowed to verify if control target achieved prior to failure) Fails to begin control within Exec. Officer approved time interval (based on manufacturer supplied data)

^a Refer to Gasoline Emission Thresholds.

Monitoring requirements and conditions for malfunction in each monitor area for agsoline vehicles

Monitor area	Malfunction criteria
	Continuous monitoring for all positive engine torque speeds / loads from 2 nd crankshaft revolution after engine start / 150 rpm below normal, warmed-up idle speed.
	· For non-LEV III = 1.5 x standard (all constituents); For LEV III = °
Misfire	· Min. misfire rate 2% for plug-in hybrid vehicles, 1% for non-plug-in vehicles (per 1,000 revolutions)
	· Single misfire rate detection in first 1,000 revolutions and 4 detections must occur in each 1,000 revolution block afterwards
	· Misfire rate that causes catalyst temperature to reach damaging levels must be detected (min. rate 5%)
	· Engines with automated shut-off/restart strategies must get Exec. Officer approval for re-enabling conditions
Evaporative System	No purge flow (applies to all flow paths with the following exceptions): - High load purge lines (with EO approval) prior to phase-in completion (20% - 2019, 50% - MY 2020, 100% - MY 2021) - High load purge line that contributes < 1% of total mass flow on US06
	 Cumulative evaporative system leak ≥ 0.020" orifice (may be revised upward for tank size > 25 gallons or < 1.5 x standard with Exec. Officer approval)
	NOTE: MIL illumination not required for approved alternate indicator for fuel cap missing or improperly secured. Alternate fuel engines require Exec. Officer approval of a strategy equating to gasoline.

a Refer to Gasoline Emission Thresholds.

Monitoring requirements and conditions for malfunction in each monitor area for gasoline vehicles (cont.)

Monitor area	Malfunction criteria
Exhaust Gas Sensors - (oxygen, A/F, NOx, PM, incl. Primary and Secondary)	Sensor Performance: For Non-LEV III = 1.5 x standard (all constituents); For LEV III = a - (Primary sensors only); symmetric and asymmetric delay to respond and response rates, lean-to-reach and rich to-lean (certification data/analysis required) Lack of circuit continuity Out of 'normal' range Feedback: failure or deterioration causes fuel system to stop using that sensor as an input (default or open loop): - (Primary sensors only): delayed entry to closed loop Monitoring Capability: any characteristic no longer sufficient for use as input to other monitoring strategy NOx activity (2022+ MY): Sensor not providing NOx data when normally feasible (isolation to root cause input component required, where applicable)
Exhaust Gas Sensors Heaters	• Current or voltage drop no longer within sensor manufacturer's limit for normal operation • Faults that result in conflict between command and actual state of the heater

a Refer to Gasoline Emission Thresholds.

Monitoring requirements and conditions for malfunction in each monitor area for gasoline vehicles (cont.)

Monitor area	Malfunction criteria						
Variable Valve Timing and/or Control	• For Non-LEV III = 1.5x standard (all constituents); For LEV III = ° - Target error (outside crank angle and/or lift tolerance) - Slow response						
	Thresholds	NMOG	NOx	CO Mult.	PM Mult.	PM Threshold	NMHC Conversion Efficiency Loss
	LEV II, ULEV II, MDV SULEV II	1.75%	1.75%	N/A	N/A	N/A	50%
Catalyst	SULEV II	2.5%	2.5%	N/A	N/A	N/A	50%
	LEV III	LEV III					
	For threshold purposes, the catalyst system is to be aged simultaneously (full catalyst volume). If fuel is shut off for misfiring cylinder, the monitored volume catalyst(s) must be aged simultaneously to the threshold limit, while unmonitored volume must be aged to the end of the vehicle's full useful life						
	· To 2025 MY (alternatively may apply 2026+); Any commanded element does not 'properly respond'						
	• Deterioration: Non-LEV III = 1.5 x standard, LEV III = °						
Cold Start Emission Reduction Strategy	2026 *: If any component or feature does not 'properly respond': fuel pressure, idle speed, VVT/L, split/multiple injections, charge motion, intake runner, swirl control, electronic wastegate position - Where 'properly respond' = by a robustly detectable amount, in the commanded direction, by an amount greater than otherwise without cold start strategy						

a Refer to Gasoline Emission Thresholds.

Monitoring requirements and conditions for malfunction in each monitor area for gasoline vehicles (cont.)

Monitor area	Malfunction criteria
Cold Start Catalyst Heating	· 2026+: Commanded (actual, if feasible) extra heat energy to catalyst - < 20% additional element/command OR fault causes > Tier 3 threshold
Heated Catalyst	Target heating temperature not reached within time limit. Limit based on 1.75 x standard (for non-LEV III vehicles); for LEV III = °. Alternate strategy requires Exec. Officer approval
Air Conditioning System	For non-LEV III vehicles: 1.5 x std; for LEV III = ° Monitoring required when off-idle fuel and/or spark modified when A/C system is on, or for A/C components used by other OBD monitors. Monitoring of all A/C components that may cause the system to invoke incorrect control
Direct Ozone Reduction (DOR)	(Monitoring for non-detectable ozone reduction required) · For Non-LEV III vehicles = NMOG ≤ 50% For LEV III vehicles = NMOG ≤ 5 mg/mi · For Non-LEV III vehicles with NMOG credit > 50% monitoring for loss of NMOG performance > 50% NMOG standard · For LEV III vehicles with NMOG credit > 5 mg/mi: monitoring for loss of NMOG performance > 5 mg/mi · DOR NMOG credit modifies malfunction criteria for other components (e.g. malfunction threshold = 1.5 x standard + DOR NMOG credit) NOTE: LEV III standard combines NMOG+NOx.

a Refer to Gasoline Emission Thresholds.

Monitoring requirements and conditions for malfunction in each monitor area for gasoline vehicles (cont.)

Monitor area	Malfunction criteria			
Cooling System; Crankcase Ventilation; Comprehensive Components	Refer to OBD II requirements for ALL VEHICLES (top of CARB OBD II section)			
Other Emission Related Components or Systems	Must request Exec. Officer approval prior to introduction on a particular vehicle. For air flow modifying devices (swirl, runner length, etc.), monitoring of the shaft(s) may suffice Non-metal or segmented shafts require segment monitoring (verification that the furthest segment properly functions) If more than one shaft to operate valves in multiple banks, not required to add more than one set of detection hardware			
Exceptions to Monitoring Requirements	Disabling allowed (with CARB approval) for: ambient temperature < 20°F, altitude > 8,000 ft, vehicle speed > 82+ mph, fuel volume < 15% of capacity, battery voltage < 11V, battery voltage > manuf. limit, during power take-off operation, or tire pressure default action			

Conditions for malfunction in each monitor area for diesel vehicles

Monitor area	Malfunction criteria
Misfire	All Diesel Vehicles: one or more continuously misfiring cylinders For all following vehicle categories: All chassis certified Passenger Cars, LD Trucks and MDPVs with combustion sensor Phase-in for Chassis certified MDPVs: 20% of 2019 MY, 50% of 2020 MY, 100% of 2021+ MY The following detection thresholds apply: When misfire percentage is > 5% in each 1,000 engine revolution increment Threshold relief is possible for: All engine certified MD vehicles: < 2.0 x NMHC, CO, NOx standard or 0.03 g/bhp-hr PM emission impact (with data evaluation) O Chassis Certified Passenger Cars, LD Trucks, MDPVs: Non-LEV III = 1.5 x NMHC/CO/NOx stds. or 2.0 x PM standard; LEV III = and Misfire monitoring conditions - continuous monitoring as follows: For Passenger Cars, LD Trucks, and Chassis Certified MDPVs - 2010 MY through 2021 MY, engine certified MDPVs - 2010 MY through 2018 MY, and all other vehicles not included in phase-in schedules below: O Positive torque conditions up to 75% of peak torque with engine speed up to 75% rated max. speed, except region bounded by the following points: Positive torque line and engine speed of 50% of max. For Passenger Cars, LD Trucks, and Chassis Certified MDPVs - 20% of 2022 MY, 50% of 2023 MY, 100% of 2024+ MY; O All positive torque engine speed and follows, except region bounded by; The positive torque engine speed of 50% of max. and 10% of peak torque above positive torque line and engine speed of 50% of max.

^a Refer to Diesel Emission Thresholds.

Conditions for malfunction in each monitor area for diesel vehicles (cont.)

Monitor area	Malfunction criteria
Particulate Matter System	Incomplete regeneration Missing substrate Active/intrusive injection
Exhaust Gas Sensor Heater	Current or voltage outside manufacturer specification (requires CARB thresholds approval)
Feedback Control	For: reductant injection, fuel system, exhaust gas sensors, boost pressure, EGR, NOx adsorber, PM system. • Monitoring of proper feedback control to diagnose: - Delayed entrance to feedback control - Failure or deterioration causes open loop or default operation - Feedback control adjustment at max. authority and unable to achieve target
Cooling System; Crank-case Ventilation; Comprehensive Components	Refer to OBD II requirements for ALL VEHICLES (top of CARD OBD II section).

Conditions for malfunction in each monitor area for diesel vehicles (cont.)

Conditions for manufactor in each monitor died for dieser verifices (cont.)	
Monitor area	Malfunction criteria (and/or system requirements)
Other Emission Related Components or Systems	(System requirements: Must request Executive Officer approval prior to introduction on a particular vehicle).
Exceptions to Monitoring Requirements	- Emissions Thresholds may be modified by Exec. Officer, dependent on upon most reliable monitoring method capabilities - PC/LDT SULEV II: Executive Officer shall approve malfunction criterion of 2.5 x Standard in lieu of 1.5 x Standard
	• Federal Bin 3 or 4: Use ULEV II NMOG & CO, with SULEV II NOx criteria
	Disabling allowed (with CARB approval) for: ambient temperature < 20°F, altitude > 8,000 ft, vehicle speed > 82+ mph, fuel volume < 15% of capacity, battery voltage < 11V, battery voltage > manufacturer limit, during power take-off operation, or tire pressure default action
	Chassis certification 2016+ MY MD Vehicles: as specified in applicable section, except: NMHC Catalyst Conversion Efficiency: 1.75 x NMHC & NOx standard Misfire: use MD engine certif. requirements
NMHC Converting Catalyst - Conversion Efficiency	(excluding downstream or PM filter for regeneration)
	Chassis certification: Non-LEV III vehicles = 1.75 x NMHC standard; LEV III = a

^aRefer to Diesel Emission Thresholds

Conditions for malfunction in each monitor area for diesel vehicles (cont.)

Monitor area	Malfunction criteria
	· Exotherm generation (PM filter regen. assistance): Catalyst unable to generate sufficient exotherm for regeneration
NMHC Converting Catalyst (cont.) - Other Aftertreatment Assistance Function	Feedgas constituency (SCR assistance): to 2024 MY PC, LDT, MDV (chassis cert.): catalyst unable to generate sufficient exotherm for regeneration (exemption if no malfunction results in a) exceeding useful life standard b) increase in emissions of > 30%, of applicable NOx or NMOG+NOx standard) - 2025+ MY; LEV III = Any applicable NMOG+NOx threshold; - Alternatively, if NMH-C efficiency monitor is used to fulfill feedgas monitoring requirement, NOT required to implement a specific feed gas monitor.
	· NMHC Conversion Downstream of PM Filter for use during regeneration: No detectable amount of NMHC conversion
	Converter downstream of SCR system: no detectable amount of NMHC, CO, NOx, or PM conversion capability (Exemption if: Catalyst is included, monitored, and aged as part of SCR system OR Catalyst is NOT part of SCR system and exemption conditions above met)
NOx Converting Catalyst - Conversion Efficiency	· Chassis Certification: Non-LEV III = 1.75 x std (NOx or NMHC); for LEV III = °

Refer to Diesel Emission Thresholds

145

Conditions for malfunction in each monitor area for diesel vehicles (cont.)

Monitor area	Malfunction criteria
NOx Converting Catalyst - Selective Catalytic Reduction (SCR)	Reductant delivery: (same emission thresholds as 'Conversion Efficiency' above) For reductant other than engine fuel: Insufficient reductant for proper operation Improper reductant in reservoir/tank
NOx Converting Catalyst - Feedback Control	 Fails to begin control within manufacturer-defined time Failure or deterioration causes open loop or default operation Control maximum authority reached and cannot achieve control target

146

Conditions for malfunction in each monitor area for diesel vehicles (non-LEV III)

Adamitan anan	L	DV and MD\	/ (Chassis Ce	ert.) threshol	d	MDV (Engine Cert.) threshold				
Monitor area	MY	NMHC	со	NOx	PM	MY	NMHC	со	NOx	PM
NOx Adsorber	2013+	1.75 x	-	1.75 x	-	2013+	2.0 x	-	+0.2	-
Exhaust Gas Sensor Performance - NOx and PM sensors - 2022+ MDV Engine Cert; NOx	2013+	1.5 x	1.5 x	1.75 x	2.0 x	2013 - 2015	2.0 x	-	+0.3	-
sensor activity		-	-	-	-	2016+	2.0 x	-	+0.2	0.03
EGR Low Flow, High Flow, Response - Cooler performance										
Boost Pressure Ctrl (under & over) - Variable Geometry Turbocharger (VGT) - Resp., Charge Air Undercool	2013+	1.5 x	1.5 x	1.5 x	2.0 x	2013+	2.0 x	2.0 x	+0.2	0.03
Cold start					oare inlet ten	or (refer to g np/energy to s intended				
- Emission Reduction Strategy	to 2025 MY	1.5 x	1.5 x	1.5 x	2.0 x	2013+	2.0 x	2.0 x	+0.2	0.03

(If standard is given, unit is a/bhp-hr)

Conditions for malfunction in each monitor area for diesel vehicles (non-LEV III) (cont.)

Monitor greg	LDV and MDV (Chassis Cert.) threshold					MDV (Engine Cert.) threshold				
Monitor dred	MY	NMHC	со	NOx	PM	MY	NMHC	со	NOx	PM
Variable Valve Train Timing and/or Control (VVT) - Target Error - Slow Response	2013+	1.5 x	1.5 x	1.5 x	1.75 x	2013+	2.0 x	2.0 x	+0.2	0.03
						to 2023	2.0 x	2.0 x	-	0.03
						2024 - 2025	2.0 x	2.0 x	+0.2	0.03
Particulate Matter Filter	2013+	013+	- 1.75 x	2026 - 2028 (Opt 1) 2029+	2.0 x	2.0 x	+0.2	0.02		
				2026+ (Opt 2)	2.0 x	2.0 x	+0.2	0.02		

(If standard is given, unit is a/bhp-hr)

Conditions for malfunction in each monitor area for diesel vehicles (non-LEV III) (cont.)

	LDV	and MDV	(Chassis C	ert.) thres	hold	MDV (Engine Cert.) threshold					
Monitor area	MY	NMHC	со	NOx	PM	MY	NMHC	со	NOx	PM	
	Particulate matter filter system										
- Frequent Regeneration	2013+	1.5 x	1.5 x 1.5 x -		2013+	2.0 x	-	+0.2	-		
	2015+	1.75 x	-	-	-	2015-2021	2.0 x	-	-	-	
- NMHC Catalytic Conversion		2022+ 2.0 x - +0.2									
	Exemption for no malfunction able to increase emissions by 30% (engine cert. MDVs) or 15% (all other vehicles) of full useful life standard AND does not exceed the full useful life standard										
	To Unable to generate feedgas for proper SCR operation. Exemption if no malfunction results in 2024 a) exceeding NOx (or NMOG+NOx) standard AND b) increase in emissions < 30%					in					
- Feedgas monitoring	2025 + LEV III NMOG + NOX 2025 + + 0.2 NOX										
Alternatively, if NMHC efficiency method is used, NOT required to implement spe					specific fee	cific feedgas monitor					
Aftertreatment Assistance Function	2010 + loss function (LEV III Proposal: Feedgas required 2015+) 2010 + loss function										

(If standard is given, unit is g/bhp-hr)

Conditions for malfunction in each monitor area for diesel vehicles (non-LEV III) (cont.)

Monitor area	MY	LDV and MDV (Chassis Cert.) threshold				MDV (Eng. Cert.) threshold NOx Cert. > 0.50 g/bph-hr				MDV (Eng. Cert.) threshold NOx Cert. ≤ 0.50 g/bph-hr			
		NMHC	со	NOx	PM	NMHC	со	NOx	PM	NMHC	со	NOx	PM
Fuel System Pressure Control	2013+	1.5 x	1.5 x	1.5 x	2.0 x	1.5 x	1.5 x	1.5 x	0.03	2.0 x	2.0 x	+0.2	0.03
Fuel System Injection Quantity/Timing	2013+	1.5 x	1.5 x	1.5 x	2.0 x		Same I	Fault Crite	eria as Fue	el System	Pressure	Control	
Fuel Control System using Tolerance compensation features	2015+	С	Detect if compensation does not match (exemption for no malfunction able to increase emissions by 15% of full useful life standard AND does not exceed the full useful life standard)										
Downstream Exhaust Gas Sensor Performance A/F Sensors	2013+	1.5 x	1.5 x	1.75 x	2.0 x	2.5 x	2.5 x	2.5 x	0.05	2.0 x	2.0 x	+0.2	0.03
Upstream Exhaust Gas Sensor Performance A/F Sensors	2013+	1.5 x	1.5 x	1.5 x	2.0 x	1.5 x	1.5 x	1.5 x	0.03	2.0 x	2.0 x	+0.2	0.03
EGR Catalyst	2013+	No detectable amount of consistuent oxidation (monitoring not required for no measurable emission impact under any reasonable driving condition)											
EGR Low Flow, High Flow, Response Cooler Performance	2013+	-	-	-	-	1.5 x	1.5 x	1.5 x	0.03	2.0 x	2.0 x	+0.2	0.03
Variable Valve Train Target Error Slow Response	2013+	-	-	-	-	1.5 x	1.5 x	1.5 x	0.03	2.0 x	2.0 x	+0.2	0.03

(If standard is given, unit is g/bhp-hr)

Conditions for malfunction in each monitor area for diesel vehicles (LEV III)

Exhaust standards		Monitor thresholds (except catalyst)°			Aftertreatment monitor thresholds ^r			DPF filtering performance monitoring threshold			
Vehicle type	Vehicle emission category	NMOG+ NOx Mult.	CO Mult.	PM Mult.	NMOG+ NOx Mult.	CO Mult.º	PM Mult.	NMOG+ NOx Mult.	CO Mult. ^b	PM Mult.	PM (mg/mi)
	LEV160 / ULEV125	1.50	150		1.75	150		1.50	150		To 2025 (and 2029 for Opt 1):
Passenger cars, Light- Duty Trucks and Chassis	ULEV70 / ULEV50	2.00	2.50		2.00	1.50	2.0°	2.00	1.50	N/A	17.50 2026 + (Opt 2):
Certified MDPVs	SULEV30 / SULEV20d	2.50		2.50	2.50		2.50	2.50		10.00 2029+ (Opt 1): 10.00	
MY 2016-18 Chassis Certified MDVs ^g	All MDV			2.0		N/A	N/A	N/A	N/A	1.75b	17.50°
MY 2019+ Chassis Certified MDVs	MDV 8,500 to 10,000 lb GVWR	1.50	1.50	0 1.50 ^b or 2.0 ^c		1.5	1.5 ^b or 2.0 ^c	1.50	1.50	1.50	To 2028: 17.5 2029+: 14.0
MY 2019+ Chassis Certified MDVs ^g	MDV 10,001 to 14,000 lb GVWR							1.50	1.50	1.50b	17.50°

Applies to 2019 and subsequent MY.

b Applies to vehicles not included in the phase-in of the PM standards set forth in Title 13, CCR section 1961.2 (a)(2)(B)2 and (a)(2)(D)3.

Applies to vehicles included in the phase-in of the PM standards setforth in Title 13, CCR section 1961.2(a)(2) (B)2 and (a)(2)(D)3.

Manufacturer shall use the 25 times NMOG + NOV multiplier for vehicles not using the provisions of

section (f) (17.1.7).

Applies to (f)(3.2.5), (f)(4)-(f)(7), (f)(9.2.2), (f)(12)-(f)(13).

f Applies to (f)(1)-(f)(2), (f)(8), And (f)(9,2,4)(A),

⁹ Except MDPVs.

PR OF CHINA - CHINA 6 OBD

China on-board diagnostics

China 6 OBD requirements (Regulation GB 18352.6) are based on CARB OBD II regulations with local updates, however certification is based on European emission cycle with OBD threshold defined on WLTC. Compared to Europe, China OBD threshold is NOX + NMHC while in Europe there is separately NOX and NMHC threshold.

List of monitoring function needed for gasoline:

- Catalyst Monitoring
- Heated Catalyst Monitoring
- · Misfire Monitoring
- · Evaporative System Monitoring
- Secondary Air System Monitoring
- · Fuel System Monitoring
- · Exhaust Gas Sensor Monitoring
- · Exhaust Gas Recirculation (EGR) System Monitoring
- $\cdot\,$ Positive Crankcase Ventilation (PCV) System Monitoring
- Engine Cooling System Monitoring
- Cold Start Emission Reduction Strategy Monitoring
- Variable Valve Timing (VVT) System Monitoring
- · Gasoline Particulate Filter (GPF) Monitoring
- Comprehensive Component Monitoring

Gasoline China Specific monitoring different from CARB:

- 0.040" evaporative system leak monitor (0.020" detection not required, but optionally allowed)
- Asymmetric O₂ response monitor not required (only symmetric is required)
- · Air Fuel Ratio Cylinder Imbalance monitor not required
- For cold start emission reduction strategy, the final delivered spark timing can be replaced with final commanded spark timing to detect the spark timing retard is correct
- The requirement of misfire reporting logic within the first 1,000 revolutions after engine start in CARB does not exist in China 6

OBD Threshold Limit (All Fuel)

0		01	СО	NMHC + NOx	PM				
Cai	Category Class		g/km						
Ty	уре 1		1.900	0.260					
		- 1	1.900	0.260	0.012				
Ty	pe 2	II	3.400	0.335	0.012				
		III	4.300	0.390					

PR OF CHINA - CHINA 6 OBD

Diesel monitoring requirements:

Non-Methane	Conversion Efficiency
Hydrocarbon (NMHC) Converting Catalyst Monitoring	Catalyst System Aging and Monitoring
	Conversion Efficiency
Oxides of Nitrogen (NOx) Converting Catalyst Monitoring	Selective Catalytic Reduction (SCR) or Other Reductant Injection System Performance
	Catalyst System Aging and Monitoring
	Minimum 5% of Misfire on single cylinder
Misfire Manitoring	Based on 1,000 Rev.
Misfire Monitoring	Multiple cylinder 50% on all engine firing event
	% Misfire exceeding OBD threshold
Eval System Manitoring	Fuel Pressure Control
Fuel System Monitoring	Feedback control

Exhaust Gas Sensor Air-fuel Ratio Sensors Monitoring NOx and PM sensors Sensor Heaters Low Flow Low Flow High Flow Stance Carbon System Monitoring Seedback control EGR Cooler Performance EGR Cooler Performance Over Boost Slow Response Charge Air Undercooling Charge Air Undercooling Feedback Control Fox adsorber capability NOx adsorber Logability to achieve NOx desorption Feedback Control		
Monitoring Nox and Hill sensors Sensor Heaters Exhaust Gas Recirculation (EGR) System Monitoring High Flow Feedback control 5cor Cooler Performance Under Boost Over Boost System Monitoring Slow Response Charge Air Undercooling Feedback Control NOx Adsorber Monitoring NOx adsorber capability to achieve NOx desorption		Air-fuel Ratio Sensors
Exhaust Gas Recirculation (EGR) System Monitoring System Monitoring System Monitoring Each Control System Monitoring EGR Cooler Performance High Flow Boost Pressure Control System Monitoring EGR Cooler Performance Under Boost Over Boost Over Boost Siow Response Charge Air Undercooling Feedback Control Adsorber Monitoring Feedback Control NOx adsorber capability to achieve NOx desorption		NOx and PM sensors
High Flow	g	Sensor Heaters
Exhaust Gas Recirculation (EGR) System Monitoring Slow Response Feedback control Feedback control EGR Cooler Performance Under Boost Over Boost Over Boost Slow Response Slow Response Charge Air Undercooling Feedback Control NOx Adsorber Monitoring NOx adsorber capability to achieve NOx desorption		Low Flow
(EGR) System Monitoring Slow Response Feedback control EGR Cooler Performance Boost Pressure Control Over Boost System Monitoring Slow Response Charge Air Undercooling Charge Air Undercooling Feedback Control NOx adsorber capability NOx Adsorber Monitoring Fuel injection capability to achieve NOx desorption		High Flow
Feedback control EOR Cooler Performance Under Boost Over Boost Slow Response Charge Air Undercooling Feedback Control NOx Adsorber Monitoring Full injection capability to achieve NOx desorption		Slow Response
Boost Pressure Control System Monitoring Charge Air Undercooling Feedback Control NOx Adsorber Monitoring Under Boost Siow Response Charge Air Undercooling Feedback Control NOx adsorber capability Nox Adsorber Monitoring Full injection capability to achieve NOx desorption	(LON) System Monitoring	Feedback control
Boost Pressure Control System Monitoring Charge Air Undercooling Feedback Control NOx Adsorber Monitoring Vox adsorber capability Nox Adsorber Monitoring Vox adsorber capability to achieve Nox desorption		EGR Cooler Performance
Boost Pressure Control System Monitoring Charge Air Undercooling Feedback Control NOx Adsorber Monitoring Full injection capability to achieve NOx desorption		Under Boost
System Monitoring Charge Air Undercooling Feedback Control NOx adsorber capability NOx Adsorber Monitoring Fuel injection capability to achieve NOx desorption		Over Boost
Charge Air Undercooling Feedback Control NOx adsorber capability NOx Adsorber Monitoring Fuel injection capability to achieve NOx desorption		Slow Response
NOx adsorber capability NOx Adsorber Monitoring Fuel injection capability to achieve NOx desorption	System Montesting	Charge Air Undercooling
NOx Adsorber Monitoring Fuel injection capability to achieve NOx desorption		Feedback Control
		NOx adsorber capability
Feedback Control	NOx Adsorber Monitoring	Fuel injection capability to achieve NOx desorption
		Feedback Control

*:

PR OF CHINA - CHINA 6 OBD

(cont.)

	Filtering Performance
	Frequent Regeneration
Particulate Matter (PM)	Incomplete Regeneration
Filter Monitoring	Missing Substrate
	Active Injection
	Feedback Control
Engine Cooling System	Thermostat
Monitoring	ECT Sensor

Cold Start Emission Reduction Strategy	Commanded object does not properly respond to the commanded action
Monitoring	Vehicle's emissions to exceed the OBD thresholds
Variable Valve Timing	Target Error
(VVT) System Monitoring	Slow Response
	Input Components
Comprehensive Component Monitoring	Output Components/Systems
	Hybrid Components

PR OF CHINA - CHINA 6 OBD

Diesel monitoring requirements not required in CN6 compared to CARB OBD II:

Monitor area	Condition for malfunction (required in CARB but not in CN6)
FIE	Injection Quantity, Pilot and Total Injection Timing Comprehensive Component C3I
EGR	EGR Catalyst Performance
MISFIRE	Intermittent Misfire (5%) Full Range
NMHC	Non-sufficient exotherm Non-sufficient feedgas for SCR
PM Filter	NMHC Conversion Feedgas generation
Coolant	Temperature drop

IUPR(m) requirement CN6

The same calculation is used as in EU.

Ratio(m) = Numerator (m) / General denominator (m):

- · Numerator incrementation based on monitoring completion
- Denominator condition based on standard driving conditions

OBD monitors	Minimum IUPR					
Catalyst, $\mathrm{O_2}$ Sensors EGR, VVT and all others monitors	0.336					
EVAP Purge Flow	0.336					
EVAP Leak 1 mm	0.260					
EVAP Leak 0.5 mm	0.100					
EVAP High load purge	0.100					
Secondary Air, PCV, GPF cold start, CSERS, Cooling Systems, Comprehensive Component Monitoring	0.100					
Specific Hybrid Monitors	0.100					

India OBD - BS VI-1 OBD and BS VI-2 OBD from AIS-137 (part 3)

Since 2010, all vehicles (except LPG or CNG-fueled vehicles and those > 3,500 kg GVW until 2013) shall be equipped with OBD systems. These systems must identify failure areas if resulting in emissions above the limits given in the following tables.

OBD thresholds for BS VI vehicles are equivalent to Euro 6-1 applied as 1st phase (1 April 2020) and to Euro 6-2 applied as 2nd phase (1 April 2023) but with NICD test cycle.

Thresholds in 1st phase AIS 137 BS VI - OBD - I (1 April 2020)

Vehicle			С	0	NMHC		NOx		PM		
		Reference		mg/km							
Category	Class	mass (RM) – (kg)	PI	CI	PI	CI	PI	CI	Pla	СІ	
M (M ₁ & M ₂)	-	All	1,900	1,750	170	290	150	180	25	25	
	- 1	RM ≤ 1,305	,	,	170	290	150	180	25	25	
N ₁	II	1,305 < RM ≤ 1,760	3,400	2,200	225	320	190	220	25	25	
	III	RM > 1,760	4,300	2,500	270	350	210	280	30	30	
N ₂	-	All	4,300	2,500	270	350	210	280	30	30	

The regulations apply to categories M₁, N₁ Class I, N₁ Class II, N₁ Class III, and N₂ with a reference mass not exceeding 2.610 kg. If requested by manufacturers, it may be extended to M₁, M₂, N₁ and N₂ type approval vehicles with a reference mass not exceeding 2.840 kg which meet the conditions established by the regulation.

Starting from 1 April 2023, according to the requirements specified in AIS-137, BS VI IUPRM shall be greater or equal to 0.1 for all monitors M.

Thresholds in 2nd phase AIS 137 BS VI - ORD - II (1 April 2023)

Vehicle		со		NMHC		NOx		PM		
Category		Reference				mg	/km			
	Class	mass (RM) - (kg)	PI	СІ	PI	CI	PI	СІ	Pla	CI
M (M ₁ & M ₂)	-	All	1,900	1,750	170	290	90	140	12	12
	- 1	RM ≤ 1,305			170	290	90	140	12	12
N_1	II	1,305 < RM ≤ 1,760	3,400	2,200	225	320	110	180	12	12
	III	RM > 1,760	4,300	2,500	270	350	120	220	12	12
N ₂	-	All	4,300	2,500	270	350	120	220	12	12

^a Applies only to direct injection positive ignition engines.

UPCOMING

India on-board diagnostics - AIS 175 BS VI - OBD stage III (1 April 2025)

Introduction of iWLTP and RDE Test Cycle.

DPF regen efficiency and clogging monitoring required.

SCR conversion efficiency monitoring required.

NOx Sensor required if SCR or NOx Trap present.

EVAP Leak detection ≥ 0.5 mm.

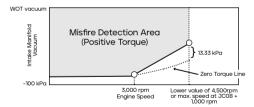
PM/PN monitoring if DPF present.

Misfire Detection with adapted threshold for PN.

Catalyst Temperature monitoring broaden with PN/NOx impact.

Japan on-board diagnostics (J-OBDII)

- J-OBDII is applied to the following vehicle configuration.
- · Gasoline and LPG fuel
- · Vehicle weight less than 3.5t
- · Max. passenger less than 10


OBD Emission threshold is defined as follows. Test cycle is combined $\ensuremath{\mathsf{JC08}}$ mode.

O.25 x JC08 Cold + 0.75 x JC08 Hot

	Passenger car	Light commercial vehicle	Medium commercial vehicle
CO (g/km)	4.06	12.46	14.28
NMHC (g/km)	0.28	0.28	0.28
NOx (g/km)	0.30	0.30	0.30

Misfire detection area is defined as in the figure below. Threshold for functional detection can be defined as follows.

- If emission failing misfire rate is less than 1%, 1% is defined as functional detection threshold
- If catalyst damaging misfire rate is less than 5%, 5% is defined as functional detection threshold

Relevant monitor areas

Monitor area	Circuit continuity	Functional detection	Emission threshold
Catalyst converter			х
Engine misfire		х	х
Oxygen sensor deterioration	×		х
EGR System		х	х
Fuel system		х	х
Exhaust Secondary Air System		х	х
Variable Valvetrain System		х	х
EVAP System	х	х	
Any Other Emission Related Components or Systems Connecting to ECU	х		

Japan on-board diagnostics scope and implementation dates

- 1. Gasoline or LPG vehicles > 3.5t (excluding passenger capacity ≤ 9 people): J-OBD I
- 2. Diesel vehicles > 3.5t (excluding passenger capacity ≤ 9 people): J-OBD II
- 3. Gasoline, LPG or diesel vehicles ≤ 3.5t, or passenger capacity ≤ 9 people: WLTP-OBD
 - Applied from 2021 Oct for new vehicles
- Applied from 2022 Oct for imported vehicles
- 4. Vehicles using fuel other than gasoline, LPG, or diesel: separately determined as necessary

South Korea on-board diagnostics

Regulation on Testing and Inspection Procedures for Manufactured Vehicles (Appendix 15-2) Special Provisions on Operational Criteria for On-Board Diagnostic (OBD) Systems in Gasoline Passenger Vehicles (Related to Article 5, Paragraph 1).

Contractiv	luania na antartia n	Thresholds in g/km					
Category	Implementation	со	NMHC	NOx	PM ^α		
Operational Criteria (I) - EURO 5 OBD	(I) -		0.25 0.3		0.05		
Operational Criteria (II) - EURO 6 OBD	TA - 31 Aug 2017 FR - 31 Aug 2018	1.9	0.17	0.15	0.025		
	TA - 1 Sep 2017 FR - 1 Sep 2018	1.9	0.17	0.09	0.012		

^a For GDI engines only.

Monitoring area
Catalyst conversion efficiency against HC
Catalyst conversion efficiency against NOx ⁶
Misfire detection
O ₂ sensor deterioration
Emission - related components
Disconnection or short-circuit of sensors and other emission-related components
Disconnection or short-circuit of the electronic purge valve

- Korean OBD regulations are based on EURO OBD standards
- · Technical requirements are similar to UN Rea 83. Annex 11
- · Complying with ISO 15031-5 standards for the access to **OBD** information

^b TA: 1 September 2011 - / FR: 1 January 2014.

South Korea on-board diagnostics

Regulation on Testing and Inspection Procedures for Manufactured Vehicles (Appendix 16) Operational Criteria and Performance. Verification Test Methods for On-Board Diagnostic (OBD) Systems in Diesel Passenger Vehicles (Related to Article 5, Paragraph 2).

Contraction	Implementation	Thresholds in g/km						
Category	implementation	со	нс	NOx	PM			
PC 2.5t max.	TA - 1 Jan 2006 - 31 Dec 2011 FR - 31 Dec 2013	3.2	0.4	1.2	0.18			
PC all	TA - 1 Jan 2012 - FR - 1 Jan 2014 -	1.9	0.32°	0.54 (0.24) ^b	0.05			
PC all	TA - 1 Sep 2014 - FR - 1 Sep 2015 -	1.75	0.29	0.18	0.025			
PC° all	TA - 31 Aug 2017 - FR - 1 Sep 2018 -	1.75	0.29	0.14	0.012			

⁹ HC refers to NMHC

Monitorina area

Degradation of catalytic converter efficiency (if equipped)

Malfunction or integrity issues of the diesel particulate filter (if equipped)

Electrical circuit disconnection or short circuit, and complete malfunction of fuel injection system or electronic actuators for fuel auantity/timina

Malfunction of emission-related or powertrain components connected to the engine control unit that causes emissions to exceed the threshold

Electrical circuit disconnection or short circuit of powertrain components related to emissions and connected to the computer

Malfunction or efficiency degradation of the EGR system

Malfunction or efficiency degradation of NOx reduction after-treatment systems using additives and their supply systems

Malfunction or efficiency degradation of NOx reduction after-treatment systems not using additives

^b Applies to diesel vehicles subject to the emission limits for Type 2 low-emission vehicles or equivalent standards, as specified in Annex 2. Item 3 of the Enforcement Rules of the Special Act on Metropolitan Air Quality Improvement.

Ovehicle manufacturer must select either NEDC or WLTP for the performance verification test of the emission OBD system.

South Korea on-board diagnostics

In Use Performance Ratio monitoring (IUPR)

 $\mathsf{IUPR}_{\scriptscriptstyle M}$ indicates how often a specific monitor is operating relative to vehicle operation:

IUPR., = Monitoring Frequency / Driving Frequency

- Monitoring frequency is the number of times the OBD system completes monitoring of the component under conditions defined by the manufacturer
- Driving frequency indicates how many times the vehicle has been operated under in-use conditions

Category	Implementation	IUPR ^{a,b,c}	Monitoring items
	TA - 31 Aug 2014 FR - 31 Aug 2015	0.1	
Gasoline		0.260	Secondary air, Cold start related components
Gasoline	TA - 1 Sep 2014 - FR - 1 Sep 2015 -	0.520	Evaporative purge control system
		0.336	Others
DiseasUDO	TA - 31 Aug 2014 FR - 31 Aug 2015	0.1	
Diesel PC	TA - 1 Sep 2014 - FR - 1 Sep 2015 -	0.336	

^a If multiple monitors operate within a single system, calculate all indices individually.

 $^{^{\}rm b}$ The diagnostic tool must display the monitor with the lowest ${\rm IUPR}_{\rm M}$

 $[^]c$ If multiple monitors share the same lowest IUPR $_{\!\! M'}$ the one with the highest Driving frequency should be shown.

Brazil on-board diagnostics development of ODB thresholds over time

	Bin		tation Valida maga		OBD emissions thresholds (g/km)					
	Requirements	Implementation	Vehicle mass	THC°	NMHC⁵	со	NOx	PM		
	Continuity monitoring for main actuators and sensors Misfire,		PC	0.75	0.3	4.11	0.75	-		
	O ₂ response, catalyst monitoring diagnostics.		LDT ≤ 1,700 kg	0.75	0.3	4.11	0.75	-		
OBDBr-2 O ₂ response and catalyst monitoring required only in % ethanol ranges of 19-30% and 90-100% No Fuel system diagnostics	CY 2014 - 2016	LDT > 1,700 kg	1.25	0.5	8.22	1.5	-			
	O2 response and catalyst	CY 2018 onwards	PC	0.75	0.3	3.0	0.75	-		
OBDBr-2+	monitoring required in all %		LDT ≤ 1,700 kg	0.75	0.3	3.0	0.75	-		
	ethanol ranges New CO limit		LDT > 1,700 kg	1.25	0.5	6.0	1.5	-		
	OBD Diesel for light passenger		PC	-	0.3	2.4	0.3	0.3		
OBDBr-D	vehicle and light commercial vehicle ≤ 3.856 ka (normative	CY 2015 onwards	LCV ≤ 1,700 kg	-	0.3	2.4	0.3	0.3		
	instruction Nr 5, 6 Feb 2013)		LCV > 1,700 kg	-	0.35	3.2	1.0	0.4		

OBDBr-1: Continuity monitoring only, for main actuators and sensors.

163

THC for LPG vehicles.

b NMHC for positive ignition vehicles except LPG.

Brazil on-board diagnostics (cont.)

	Requirements		mentation Vehicle mass		ns monitor t mg/km) ^d	OBD emissions catalyst monitor thresholds (mg/km)	
				NMOG + NOx	CO NMHC ^b	PM⁵	NMOG + NOx
OBDBr-3°		January 2022	Light-duty passenger	360	2,000	36	480
PROCONVE L/ For re		onwards	Light-duty commercial and off-road	630	2,500	36	840

^a OBDBr3, has as reference the provisions of CFR Title 40 Part 86 §86.1806 DIAGNOSTICS ON BOARD. Until the regulation of the OBD Br3 system is finalized, vehicles of the Phases PROCONVE L7 and L8 must comply with the requirements of the OBD Br2+ system established in Resolution CONAMA 354/2004.

EXHAUST POLLUTANT EMISSIONS STANDARDS

^b Only applicable for GDI engines.

[°]NMOG + NOx calculation based on CFR40.

^d Monitor threshold except catalyst.

[°] Must use the PID Parameter Identifier 0x93.

Brazil on-board diagnostics (cont.)

	Requirements	Implementation	Vehicle mass	Level	OBD emissions monitor thresholds ^d			
	Requirements				NMOG (mg/km)	NOx (mg/km)	CO (mg/km)	PM (mg/km)b
	Unburned ethanol is not allowed to be deducted. Introduce NMOG+NOX Calculation. ⁵ 160,000 km durability. Fault codes, start dates and respective repairs must remain recorded for a minimum period of 400 consecutive days. ⁶	January 2025 onwards	DIESEL Light-duty commercial vehicles	320	300	600	2,500	60
				280	290	520	2,500	60
				250	280	460	2,500	60
				220	270	405	2,000	30
				200	260	370	2,000	30
				170	250	310	2,000	27
BDBr-3°			VLC > 1,700 Kg	140	240	255	2,000	18
PROCONVE L8				110	230	200	2,000	18
			VLP / VLC ≤ 1,700 kg	80	210	150	2,000	18
				70	180	135	1,500	18
				60	150	120	1,500	18
				50	120	105	1,500	18
				40	90	90	1,250	18
				30	70	65	1,250	12
	ddys.			20	50	40	1.000	12

[&]quot;OBDBr3, has as reference the provisions of CFR Title 40 Part 86 \$86.1806 DIAGNOSTICS ON BOARD. Until the regulation of the OBD Br3 system is finalized, vehicles of the Phases PROCONVE L7 and 1.8 must comply with the requirements of the OBD Br2+ system established in Resolution CONAMA 354/2004. Donly applicable for GDI engines.

ON-ROARD DIAGNOSTIC AND MONITORING

d Monitor threshold except catalyst.

*In addition to the PID Parameter Identifier 0x93, it must report the permanent fault codes (PDTC) with storage of at least four fault codes that activated the LIM, as provided for in the US/California regulation CARB1862, and the PIDs 0x30 and PID 0x31 defined by international standards ISO 15031-5 and SAE 13979, and the technical requirements will be described in a Normative Instruction to be published by IRAMA

^{*}NMOG + NOv calculation based on CFR40

Brazil on-board diagnostics - OBDBr-3° PROCONVE L7 diesel vehicles

Damilyamanta	luania un antestian	Vehicle mass	OBD emissions monitor thresholds (mg/km)			
Requirements	Implementation	venicie mass	NMOG	NOx	со	PM
The application of K _i Factor	January 2022 onwards	Light-duty passenger	160	200	2,000	36
is not necessary.		Light-duty commercial and off-road	300	600	2,500	60

^a Only for diesel OBDBr-3 PROCONVE L7 applications.

For diesel, OBDBr-3 PROCONVE L8 applications are in development at IBAMA.

EVAPORATIVE EMISSIONS STANDARDS

Limit values:

EUROPEAN UNION - EURO 6 AND 7 EVAPORATIVE EMISSIONS

Emission calculation and limit values

Evaporative emission calculation (from Euro 6d) = M_{HS} + M_{D1} + M_{D2} + 2xPF (M_{D2} + 2xPF added, change from NEDC to WLTP)

Euro 6: 2.0 g / test
Euro 7 (from 28 November 2026): 1.5 g / test

Evaporative emissions test procedures

Test procedures follow UN/ECE R154 / GTR19.

Tank permeability factor (PF) is determined according to the following procedure:

Procedure for permeability factor

Tank PF procedure

Fill the tank to 40±2 per cent of its nominal capacity with reference fuel

Soak for 3 weeks at 40°C±2°C

Drain and fill the tank to 40% of its nominal capacity with reference fuel

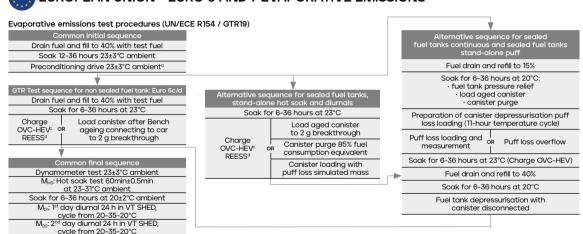
HC3w: Measurement of HC in the same conditions as for the 1st day of diurnal emission test:

Soak for the remaining 17 weeks at 40°C±2°C

Drain and fill the tank to 40% of its nominal capacity with reference fuel

HC20w: Measurement of HC in the same conditions as for the $1^{\rm st}$ day of diurnal emission test:

Permeability Factor PF = HC20w - HC3w


A manufacturer using multilayer tanks or metal tanks may choose an Assigned Permeability Factor: 120 mg/day.

EXHAUST OLLUTANT EMISSIONS STANDARDS GAS / FUEL GAS / FUEL ONSUMPTION / ZEV ON-BOARD DIAGNOSTIC AND MONITORING EVAPORATIVE EMISSIONS STANDARDS

UELS

EUROPEAN UNION - EURO 6 AND 7 EVAPORATIVE EMISSIONS

POLLUTANT EMISSION: STANDARDS GAS / FUEL
CONSUMPTION / ZEV

ON-BOARD
DIAGNOSTIC AND
MONITORING

EVAPORATIVE EMISSIONS STANDARDS

FUELS

EUROPEAN UNION - EURO 3-4-5-6C EVAPORATIVE EMISSIONS

Emission calculation and limit values

Evaporative emission calculation = diurnal test + hot soak

Limit values Euro 3-4-5-6c: 2.0 a / test

Evaporative emissions test procedure Euro 3-4-5-6c Regulation 715/2007/EC. Regulation 692/2008/EC Annex VI. UN/ECE Regulation No. 88 Annex 7.

Test sequence for Euro 3-4-5-6c

Test sequence: Euro 3-4-5-6c, TA 1/2000

Fill to 40% with test fuel

Canister loadina: Repeated diurnal heat builds or butane/N₂ loading to 2 a breakthrough

Drain tank, fill to 40% with test fuel

Preconditioning drive at 20-30°C: 1 ECE+2 EUDC cycles

Soak 12-36 hours at 20-30°C ambient

Exhaust test ECE+EUDC at 20-30°C

Evap conditioning drive Urban cycle max. 2 minutes later

Hot soak test 1 hour at 20-30°C ambient

Soak

6-36 hours (min 6 h at 20±2°C ambient)

Real time diurnal test 1 heat build in 24 h in VT SHED. cycle from 20-35°C, uT=15K

EVAPORATIVE EMISSIONS STANDARDS

^a New Pre-conditioning drive and Driving cycle by class of vehicles defined: Class 1: 2x Low-Medium-Low. Class 2 & 3: Low-Medium-High-Medium.

b From Euro 6e: Low-Medium-High-Extra high.

^c Off-Vehicle Charaina Hybrid Electric Vehicle.

d Rechargeable Electric Energy Storage System.

CARB LEV III limit values (enhanced evaporative emissions, also adopted by EPA Tier 3)

- · Requires expanding the use of existing zero-evap technology to vehicle classes not previously covered
- · Two options are provided for complying with total hydrocarbon evaporative emissions from MY 2015 onwards

Ontion 1	Option 2								
Орион н	Option 1 (in practice not used)				Option 2				
Vehicle type	3-day diurnal + hot soak and 2-day diurnal + hot soak		Running	Vehicle type		Highest whole	Canister	Running	
(lbs GVWR)	Whole vehicle (g/test)	Fuel only (g/test)	loss (g/mile)	(lbs GVWR)		vehicle diurnal + hot soak (g/test)	bleed (g/test)	loss (g/mile)	
Passenger cars	0.35			Pa	ssenger cars	0.3			
LD trucks	0.50	0.0	0.05	0.0 0.05	LD trucks ≤	0 - 3,750 lbs LVW	0.3	0.02	0.05
≤ 6,000 lbs	0.50	0.0	6,000 lbs		3,750 - 5,750 lbs LVW	0.4	0.02	0.05	
LD trucks 6,000 - 8,500 lbs	0.75			LD truck	s 6,000 - 8,500 lbs	0.5			

- · Implementation schedule: 2015-2017: min. average of previous 3 models per year PZEVs. 2018-2019 60%, 2020-2021 80%, 2022 100%
- · Eliminate testing with MTBE fuel, require testing with E10 for LEV III and all evaporative certifications from 2020
- Extend applicability of ORVR requirement to complete vehicles up through 14,000 lbs GVWR inclusive (option to use E10 fuel for testing in lieu of federal certification fuel)
- Outstanding issues: implementation of leak test (permissible orifice 0.01-0.02 inch to complete the current 2-day or 3-day diurnal test procedure sequence)
- $\cdot\,$ Useful life shall be 15 years or 150,000 mi, whichever occurs first

Test sequence

Temperature	3-day diurnal	Supplemental 2-day diurnal		
	Fuel drain / fill	Fuel drain / fill		
	6 h minimum soak	6 h minimum soak		
68-86°F	Preconditioning: 1 EPA II. Fuel drain/fill. 12-36 h soak. Canister purge: 300 BV at 0.8 dfm with 25-75 g/lb dry air Canister load: 15 x WC at 15 g butane/h with 50/50 butane/ N_2 mix	Preconditioning: 1 EPA II. Fuel drain/fill. 12-36 h soak. Canister load: Load to 2 g break-through at 40 g butane/h with 50/50 butane/N ₂ mix		
Exhaust test: EPA III		Exhaust test: EPA III		
	1-6 h soak Running Ioss test: EPA II, 2x NYCC, EPA II	Not required		
	1 h hot soak test (EPA 95 / CARB 105°F)	1 h hot soak test (68-86°F)		
EPA: 90-100°F CARB: 100-110°F	Stabilize temperature: 6-36 h (EPA 72 / CARB 65°F)	Stabilize temperature: 6-36 h (EPA 72 / CARB 65°F)		
	Diurnal emission test 3 heat builds in 72 h EPA cycle 72-96°F, CARB cycle 65-105°F	Diurnal emission test 2 heat builds in 48 h EPA cycle 72-96°F, CARB cycle 65-105°F		

Note: Vehicle certification requires the 3-day diurnal, in-use vehicles the supplemental 2-day diurnal test.

EXHAUST
POLLUTANT EMISSIONS
STANDARDS

GAS / FUEL
CONSUMPTION / ZEV

ON-BOARD DIAGNOSTIC AND MONITORING EVAPORATIVE EMISSIONS STANDARDS

FUELS

Additional requirements

For 2012 and subsequent model year off-vehicle charge capable hybrid equipped with a non-integrated refueling canister only system.

- · The canister should be loaded using fuel-tank-refill method described under "refueling event" section of ORVR procedure (see page 102)
- · For hybrid vehicles, battery state-of-charge setting prior to the exhaust test shall be at the level minimum operation of engine

Running Losses:

- · Until Tier 3 / LEV III regulations maximum limit was 0.05 a/mile
- · In 2024+ Tier 4 / LEV IV reduced this limit to 0.01 a/mile

Advanced Clean Cars II (ACC II)

- · As part of ACC II, CARB introduced amended emissions standards including more stringent evaporative requirements for hybrid vehicles
- Due to the revocation of the ACC II waiver in June 2025. implementation of these amendments is on hold

Further EPA Tier 3 requirements

Tier 3 began in 2018, same phase-in percentages as CARB LEV III. Harmonization of requirements with CARBLEV III.

- · OBD detection of leak greater than 0.02 inch required
- · Phase-in vehicles will be tested with E15. E10 as option available in 2017
- · After 2020, all test fuel should be EPA (E15) certification fuel
- · Requirements do not include rig test in the regulation, but certification will be accepted for PZEV in 2017 and beyond until 2019
- Useful life extended to 150,000 mi
- · OBD detection of leak greater than approx, 0.01 inch for pressurized fuel systems

US AND CALIFORNIA

On-board refuelling vapor recovery (ORVR) standards

ORVR standard

- · HC standard: 0.2 g/gallon (0.053 g/L)
- Applicable in all US Federal States. CARB adopted EPA regulation phase-in with 40/80/100% over 3 years

Passenger cars MY 1998-2000
LDT ≤ 6,000 lbs GVW MY 2001-2003
LDT > 6,000 lbs GVW MY 2004-2006

- · No changes to ORVR procedures for CARB LEV II and EPA Tier 2
- Measurement of emissions that escape from the vehicle during a refueling event. Stand-alone test in addition to enhanced EVAP tests
- · Fuel used: US Certification fuel 8.7-9.2 RVP

CARB LEV III amendment

- California certification fuel E10 (7 psi RVP) may be alternatively used for MY 2015 onwards
- If using California certification fuel, the fuel shall be dispensed at a temperature of 79±1.5°F (26.1±0.8°C) and at a dispensing rate of 9.8±0.3 gal/min (37±1.11/min)

ORVR test procedures and limit

Vehicle preconditioning	 Fuel drain and fill to 40% 6 h min. soak at 68-86°F (20-30°C) 1x EPA II preconditioning drive 				
Canister preconditioning	Fuel drain and fill to 40% 12-36 h soak Load canister with HC vapors until 2 g breakthrough at 40 g/h 50% butane/N ₂ Exhaust test: EPA III (recording emissions) 0-1 h soak at 68-86°F (20-30°C) Canister purge drive at 68-86°F: EPA II, 2x NYCC, EPA II				
Refueling event	Disconnect canister(s) Fuel drain and fill to 10% 6-24 h sook at 80±3°F (27°C) Reconnect canister(s) Dispense fuel at 10 gal/min until automatic shut-off. If < 85% of total tank capacity is dispensed, continue auto-refueling until fuel dispensed is ≥ 85%. Administrator may use 4 gal/min rate (15 l/min) Dispense fuel temperature: 67±1.5°F (19°C)				
	HC standard: 0.2 g/gallon (0.053 g/L)				

EXHAUST POLLUTANT EMISSIONS STANDARDS GAS / FUEL
CONSUMPTION / ZEV

ON-BOARD DIAGNOSTIC AND MONITORING EVAPORATIVE EMISSIONS STANDARDS

CARB LEV II and EPA Tier 2 test conditions (enhanced evaporative emissions)

EPA and California accept certification data generated using the other agency's test procedure.

EPA evaporative emissions requirements

- · Harmonizes federal limits with CARB LEV II requirements:
 - 3-day diurnal = 0.5 g/test for LDV
 - Supplemental 2-day = 0.85 g/test for LDV
- LLDT / HLDT / MDPV have less stringent requirements
- CARB LEV II certification data to be used for EPA certification without prior approval
- Implemented in MY 2009 for LDV/LLDT and MY 2010 for HLDT/MDPV.
 Alternate phase-in for FFV (flex fuel vehicles) when operating on non-gasoline

Further CARB LEV II requirements

- $\cdot\,$ Useful life for standards extended to 150,000 mi or 15 years
- 1.75x higher in-use standard for 3 model years for LEV II families introduced prior to 2007

 Optional "Zero-Evap" standard is available to earn NMOG credits or partial ZEV credits, 0.35 g/test for hot soak + highest diurnal (2 or 3 days) and 0.0 g (< 0.054 g) from fuel system

Further EPA Tier 2 requirements

- $\cdot\,$ Useful life for standards extended to 120,000 mi
- $\cdot\,$ Ethanol and HEV/ZEV vehicles regulated for the first time

Tier 2 and LEV II test conditions

	EPA Enhanced & Tier 2	CARB Enhanced & LEV II	
Test temperature	95±5°F	105±5°F	
Fuel	9 psi RVP, 7.8 psi for altitude testing	7 psi RVP	
Phase-in	Enhanced: 1996 - 1999: 20/40/90/100% Tier 2: 2004 - 2007: 25/50/75/100%	Enhanced: 1995 - 1998: 10/30/50/100% Tier 2: 2004 - 2006: 40/80/100%	

EXHAUS I POLLUTANT EMISSIONS STANDARDS GAS / FUEL
CONSUMPTION / ZEV

ON-BOARD
DIAGNOSTIC AND
MONITORING

EVAPORATIVE EMISSIONS STANDARDS

FUELS

PR OF CHINA - EVAPORATIVE EMISSIONS LIMITS AND TEST CONDITIONS

China 6 evaporative emissions requirements

- New gasoline vehicles up to and including China 5 must meet an evaporative emission limit of 2 g/test (SHED)
- China V CoP for canister: measured BWC & volume no less than 0.9 of declared value: Conformity of in-use < 2 g/day required for useful life
- · Nationwide implementation light-duty 1 July 2020 (China 6a)
- · Leak detection requirement: orifice detection size 0.5 to 1 mm

Type IV diurnal emission test procedure based on CARB test procedure

- · WLTC preconditioning drive cycle, Type I: Low-Medium-High-High
- · Preconditioning test requirements for NOVC and OVC
- · Temperature soak and driving at 38±2°C with connected canister
- Hot Soak test at initial Temperature =38±2°C; (range 33-41°C)
- · SHED Temperature profile 68-95 °F (20-35°C)
- · China Fuel E0 56-60 kPa
- Conformity of Production (CoP) for Canister and Vehicle: Canister measured BWC & volume > 0.9 of declared value; Vehicle emission < 1.1 times of limit value

- Test procedure for Non-Integrated Refueling Canister Only (NIRCO) (tank drain and refill with disconnected canister)
- · Emission calculation: diurnal (higher of 25 or 48 hour)+ hot soak
- · Deterioration Factor (DF) defined for diurnal emission 0.06 g/day

China VI Type IV Diurnal emission limits incl. hot soak and DF

Stage	Vehicle category	Evaporative limit g/test (SHED)		
	Type 1	0.70		
CN6	Type 2 Cl. I	0.70		
	Type 2 Cl. II	0.90		
	Type 2 Cl. III	1.20		

China V/VI Type VII ORVR requirements

- $\cdot~$ Type VII test ORVR limit < 0.05 g/L based on CARB test procedure
- DF defined for ORVR emission 0.01 g/L
- Test procedure for NIRCO (tank 95% fill and tank drain and refill 10% refill with disconnected canister)

POLLUTANT EMISSION: STANDARDS GAS / FUEL
CONSUMPTION / ZEV

ON-BOARD DIAGNOSTIC AND MONITORING EVAPORATIVE EMISSIONS STANDARDS

UELS

Evaporative emissions requirements

Gasoline vehicles have to meet an evaporative (SHED) limit of 2 g/test since 2000.

Test conditions follow Euro standards:

- Current BS6 standard is equivalent to Euro 5 (1 day diurnal with 2.0 g/test limit)
 - The current certification fuel must now be E20
- Government of India has notified a Phase 3 of BS6, which will implement the WLTP drive cycle and GTR-19 from 1 April 2027. This will include adoption of test procedures under AIS-175, which incorporate UN GTR-19 for evaporative emissions (2-day diurnal, 2.0 g/test limit)
- · BS7 discussions are in initial stages
- · There are also discussions to move to E27

JAPAN - EVAPORATIVE EMISSIONS LIMITS AND TEST CONDITIONS

Evaporative Emissions (until 2020)

Running 4 x JC08

Hot Soak Loss (HSL) 1 hr SHED at 27 + 4°C Diurnal Breathing Theat build in 24 hrs Loss (DBL) Cycle from 20°C - 35°C HSL + DBL ≤ 2 a/test Emission standard

New Evaporative Emissions (2020 and later)

Currently following GTR 19 (equivalent to Euro 6d)

Running WLTC (Low, Medium, High, Medium)

Hot Soak Loss (HSL) 1 hr SHED at 27 + 4°C Diurnal Breathina 2 heat build in 48 hrs Loss (DBL) Cycle from 20°C - 35°C

HSL + DBL_1stDay + DBL_2ndDay + 2 x PF ≤ 2 g/test Emission standard

SOUTH KOREA

South Korea

KLEV2 until 2016: limit 0.35 g/test (2 day diurnal).

KLEV3 from 2016:

- · Limit 0.35 g/test (2 day diurnal)
- · Leak detection requirements: orifice detection size 1.0 mm

Evaporative requirement Proconve-L6 (past)

Evaporative requirement (E22/E61/E100) = 1.5 g/test during 24 hours SHED

Evaporative requirement Proconve-L7 (since 1 January 2022) and L8 (since January 2025)

- 1. Evaporative requirement (E22/E61/E100) ≤ 0.5 g/test during 48 hours SHED:
- Onboard Refueling Vapor Recovery requirement (ORVR) ≤ 50 mg/L refueling;

Test procedures based on CFR86 (US Federal Regulations, volume 40, part 86).

Leak detection requirement starting with L8: orifice detection size 2.286 mm (0.09").

EVERYTHING WE DO REVOLVES AROUND YOU. WE DEVELOP PREMIUM FUEL SYSTEMS AND ELECTRICAL SYSTEMS TO KEEP YOUR INTERNAL COMBUSTION **ENGINES MORE EFFICIENT** TODAY, WHILE INVESTING IN TECHNOLOGIES TO HELP BUILD A CLEANER TOMORROW.

EXHAUST
POLLUTANT EMISSIONS
STANDARDS

CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV ON-BOARD DIAGNOSTIC AND MONITORING EVAPORATIVE EMISSIONS STANDARDS

FUELS

EMISSIONS STANDARDS

EU regulation 2017/1151 - unleaded gasoline test fuel: petrol 95 RON E10

Parameter	Unit	Limits	Test method
Octane, RON	-	95.0 - 98.0	EN ISO 5164
Octane, MON	-	85.0 - 89.0	EN ISO 5163
Vapour pressure (DVPE)	kPa	56 - 60	EN 13016-1
Density at 15°C	kg/m³	743.0 - 756.0	EN ISO 12185
Appearance at -7°C	-	Clear and Bright	-
Distillation at 70°C	% vol	34 - 46	EN ISO 3405
Distillation at 100°C	% vol	54 - 62	EN ISO 3405
Distillation at 150°C	% vol	86 - 94	EN ISO 3405
Final Boiling Point	°C	170 – 195	EN ISO 3405
Aromatics	% vol	25 - 32	EN 22854
Olefins	% vol	6 – 13	EN 22854
Benzene	% vol	< 1.00	EN 22854
Oxygen (ethanol only)	% mass	3.3 - 3.7	EN 22854
Sulfur	mg/kg	< 10	EN ISO 20846
Lead	mg/L	<5	EN 237
Phosphorus	mg/L	1.3	ASTM D3231
Ethanola	% vol	9 – 10	EN 22854
Water	% (v/v)	< 0.05	EN 12937
Oxidation stability	minutes	> 480	EN ISO 7536
Existent gum	mg/100 ml	< 4	EN ISO 6246
Copper corrosion	-	Class 1	EN ISO 2160

^a Ethanol meeting EN 15376 is the only oxygenate to be intentionally added.

EU regulation 2017/1151 - LPG

Parameter	Unit	Limit		Test method
Parameter	Onit	Fuel A	Fuel B	rest method
Composition				ISO 7941
C₃ content	% vol	28 - 32	83 – 87	
C ₄ content	% vol	Balance	Balance	
< C ₃ , > C ₄	% vol	< 2	< 2	
Olefins	% vol	< 12	< 15	
Evaporation residue	mg/kg	< 50	< 50	prEN 15470
Water at 0°C	-	Free	Free	prEN 15469
Total sulfur content	mg/kg	< 10	< 10	ASTM D6667
Hydrogen sulphide	-	None	None	ISO 8819
Copper strip corrosion ^o	Rating	Class 1	Class 1	ISO 6251
Odor	-	Characteristic	Characteristic	
Motor octane number	-	> 89	> 89	EN 589 Annex B

a This method may not accurately determine the presence of corrosive materials if the sample contains corrosion inhibitors or other chemicals which diminish the corrosivity of the sample to the copper strip. Therefore, the addition of such compounds for the sole purpose of biasing the test method is prohibited.

EU regulation 2017/1151 - Ethanol E75 for Testing at Low Ambient Temperatures

Parameter	Unit	Limits	Test method
Octane, RON	-	> 95.0	EN ISO 5164
Octane, MON	-	> 85.0	EN ISO 5163
Vapour Pressure	kPa	50 - 60	EN ISO 13016-1 (DVPE)
Density at 15°C	kg/m³	Report	EN ISO 12185
Appearance ^a	-	Clear and Bright	Visual inspection
Sulfur	mg/kg	< 10	EN ISO 20846
Phosphorus ^b	mg/L	< 0.3	EN 15487
Ethanol and higher alcohols ^c	% vol	70 - 80	EN 1601
Higher alcohols (C ₃ -C ₈)	% vol	< 2	-
Methanol	% vol	< 0.5	-
Water	% (v/v)	< 0.3	ASTM E1064
Petrol ^d	% vol	Balance	EN228
Oxidation stability	minutes	> 360	EN ISO 7536
Existent gum	mg/100 ml	< 4	EN ISO 6246
Inorganic chloride	mg/L	<1	ISO 6227
pHe	-	6.5 – 9	ASTM D6423
Copper strip corrosion	Rating	Class 1	EN ISO 2160
Acidity (CH _z COOH)	% m/m	< 0.005	ASTM D1613
ACIGITY (CH ₃ COOH)	mg/L	< 40	ASTIVI DIOIS
Carbon / hydrogen ratio	-	Report	-
Carbon / oxygen ratio	-	Report	-

^aTo be determined at ambient temperature or 15°C, whichever is higher, ^bThere shall be no intentional addition of compounds containing phosphorus, iron, managenese, or lead to this reference fuel, ^cEthanol to meet specification of FN 15376 is the only oxygenate that shall be intentionally added to this reference fuel "The unleaded petrol content can be determined as 100 minus the sum of the percentage content of water and alcohols

EU regulation 2017/1151 - Ethanol: E85

Parameter	Unit	Limits	Test method
Octane, RON	-	> 95.0	EN ISO 5164
Octane, MON	-	> 85.0	EN ISO 5163
Vapour Pressure	kPa	40 - 60	EN ISO 13016-1 (DVPE)
Density at 15°C	kg/m³	Report	EN ISO 12185
Appearance ^a	-	Clear and Bright	Visual inspection
Sulfur	mg/kg	< 10	EN ISO 20846
Phosphorus ^b	mg/L	< 0.3	EN 15487
Ethanol and higher alcohols°	% vol	83 - 85	EN 1601
Higher alcohols (C ₃ -C ₈)	% vol	< 2	-
Methanol	% vol	< 0.5	-
Water	% (v/v)	< 0.3	ASTM E1064
Petrol ^d	% vol	Balance	EN228
Oxidation stability	minutes	> 360	EN ISO 7536
Existent gum	mg/100 ml	< 5	EN ISO 6246
Inorganic chloride	mg/L	<1	ISO 6227
рНе	-	6.5 - 9	ASTM D6423
Copper strip corrosion	Rating	Class 1	EN ISO 2160
Acidity (CH ₃ COOH)	% m/m	< 0.005	ASTM D1613
ACIGITY (CH3COOH)	mg/L	< 40	ASTIVIDIO
Carbon / hydrogen ratio	-	Report	-
Carbon / oxygen ratio	-	Report	-

To be determined at ambient temperature or 15°C, whichever is higher. There shall be no intentional addition of compounds containing phosphorus, iron, manganese, or lead to this reference fuel. Ethanol to meet specification of FN 15376 is the only oxygenate that shall be intentionally added to this reference fuel "The unleaded petrol content can be determined as 100 minus the sum of the percentage content of water and alcohols

EU regulation 2017/1151 - Diesel B7

Parameter	Unit	Limits	Test method
Cetane Number	-	52 - 56	EN ISO 5765
Cetane Index	-	< 46	EN ISO 4264
Density at 15°C	kg/m³	833.0 - 837.0	EN ISO 12185
Distillation at 50% point	°C	> 245.0	EN ISO 3405
Distillation at 95% point	°C	345.0 - 360.0	EN ISO 3405
Final Boiling Point	°C	< 370	EN ISO 3405
Flashpoint	°C	> 55	EN ISO 2719
Cloud point	°C	< -10	EN 23015
Viscosity at 40°C	mm²/s	2.30 - 3.30	EN ISO 3104
Polycyclic aromatics	% mass	2.0 - 4.0	EN 12916
Sulfur	mg/kg	< 10	EN ISO 20846
Total contamination	mg/kg	< 24	EN 12662
Water content	mg/kg	< 200	EN ISO 12937
FAME ^a	% vol	6.0 – 7.0	EN 14078
Oxidation stability at 110°Cb	hr	< 20	EN 15751
Copper corrosion	-	Class 1	EN ISO 2160
Conradson carbon residue	% m/m	< 0.2	EN ISO 10370
Ash content	% m/m	< 0.010	EN ISO 6245
Lubricity	wm	< 400	EN ISO 12156
Acid Number	mg KOH/g	< 0.10	EN ISO 6618

[°]FAME content to meet the specification of EN 14214.

EXHAUST
POLLUTANT EMISSIONS
STANDARDS

GAS / FUEL
CONSUMPTION / ZEV

ON-BOARD
DIAGNOSTIC AND
MONITORING

EVAPORATIVE EMISSIONS STANDARDS FUELS

EMISSIONS STANDARDS

^b Even though oxidation stability is controlled it is likely that shelf life will be limited.

EU regulation 2017/1151 - Natural Gas/Biomethane

Parameter	Unit	Basis	Limits	Test method
Reference fuel G20				
Methane	% mole	100	99 - 100	ISO 6974
Balancea	% mole	-	<1	ISO 6974
Sulfur Content ^b	mg/m³	-	< 10	ISO 6326-5
Wobbe Index (net)°	MJ/m³	48.2	47.2 - 49.2	-
Reference fuel G25				
Methane	% mole	86	84 - 88	ISO 6974
Balance ^a	% mole	-	<1	ISO 6974
N ₂	% mole	14	12 - 16	ISO 6974
Sulfur Content ^b	mg/m³	-	< 10	ISO 6326-5
Wobbe Index (net) ^c	MJ/m³	39.4	38.2 - 40.6	-

^a Inerts (different from N₂) + C₂ + C₂₊

EXHAUST OLLUTANT EMISSIONS STANDARDS

b Value to be determined at 293.2K and 101.3 kPa.

 $^{^{\}circ}\,\mbox{Value}$ to be determined at 273.2 K and 101.3 kPa.

EU regulation 2017/1151 - Hydrogen for Internal Combustion Engines

Parameter	Unit	Limits	Test method
Hydrogen purity	% mole	98 – 100	ISO 14687-1
Total hydrocarbon	µmol/mol	0 - 100	ISO 14687-1
Water	µmol/mol	b	ISO 14687-1
Oxygen	µmol/mol	b	ISO 14687-1
Argon	µmol/mol	b	ISO 14687-1
Nitrogen	µmol/mol	b	ISO 14687-1
СО	µmol/mol	0 – 1	ISO 14687-1
Sulfur	µmol/mol	0 - 2	ISO 14687-1
Permanent particulates ^c	-	-	ISO 14687-1

a Not to be condensed.

 $^{^{\}rm b}$ Combined water, oxygen, nitrogen and argon: 1,900 $\mu mol/mol.$

^c The hydrogen shall not contain dust, sand, dirt, gums, oils or other substances in an amount sufficient to damage the fuelling station equipment or the vehicle (engine) being fueled.

EU regulation 2017/1151 - Hydrogen for Fuel Cell Vehicles

•			
Parameter	Unit	Limits	Test method
Hydrogen°	% mole	99.99 - 100	ISO 14687-2
Total gasses ^b	µmol/mol	0 – 100	-
Total hydrocarbon	µmol/mol	0 - 2	ISO 14687-2
Water	µmol/mol	0 - 5	ISO 14687-2
Oxygen	µmol/mol	0 - 5	ISO 14687-2
Helium, Nitrogen, Argon	µmol/mol	0 - 100	ISO 14687-2
CO ₂	µmol/mol	0 - 2	ISO 14687-2
CO	µmol/mol	0 - 0.2	ISO 14687-2
Total sulfur compounds	µmol/mol	0 - 004	ISO 14687-2
Formaldehyde (HCHO)	µmol/mol	0 - 0.01	ISO 14687-2
Formic acid (HCOOH)	µmol/mol	0 - 0.2	ISO 14687-2
Ammonia (NH₃)	µmol/mol	0 - 1	ISO 14687-2
Total halogenated compounds	µmol/mol	0 - 0.05	ISO 14687-2
Particle size	μm	0 - 10	ISO 14687-2
Particulates concentration	μgl/L	0 - 1	ISO 14687-2

^a The hydrogen fuel index is determined by subtracting the total content of non-hydrogen gaseous constituents listed in the table (Total gases), expressed in mole percent, from 100 mole percent. It is less than the sum of the maximum allowable limits of all non-hydrogen constituents shown in the Table.

^b The value of total gases is summation of the values of the non-hydrogen constituents listed in the table, except the particulates.

US - certification unleaded gasoline fuel: E0

Fuel Name	EO	Gasoline	Gasoline	Cold CO	Cold CO
Specification		40 CFR 86.113-04	40 CFR 86.113-04	40 CFR 86.213-11	40 CFR 86.213-11
Property	Units	Ambient	High Altitude	Regular	Premium ^b
Octanea	RON	93 min.	93 min.		
Octanea	(R+M)/2			87.5 - 88.1°	91.8 - 92.8°
Sensitivity	R-M	7.5 min.	7.5 min.	7.5 min.	7.5 min.
DVPE	PSI	8.7 - 9.2	7.6 - 8.0	11.2 - 11.8	11.2 - 11.8
IBP	°F	75 - 95	75 - 105	76 - 96	76 - 96
T10	°F	120 - 135	120 - 135	98 - 118	105 - 125
T50	°F	200 - 230	200 - 230	179 - 214	195 - 225
T90	°F	300 - 325	300 - 325	316 - 346	316 - 346
FBP	°F	415 max.	415 max.	413 max.	413 max.
Aromatics	% vol	35 max.	35 max.	22.4 - 30.4	28 - 36
Olefins	% vol	10 max.	10 max.	7.5 - 17.5	5.5 - 15.5
Saturates	% vol	Remainder	Remainder	Remainder	Remainder
Lead	g/L	0.013 max.	0.013 max.	-	-
Ledd	g/gal	-	-	0.01 max.	0.01 max.
Dhacabarus	g/L	0.0013 max.	0.0013 max.	-	-
Phosphorus	g/gal	-	-	0.005 max.	0.005 max.
Sulfur content°	mg/kg	15 - 80	15 - 80	15 - 80	15 - 80

a Octane specifications are optional for manufacturer testing. The premium fuel specifications apply for vehicles designed to use high-octane premium fuel. Sulfur content will not exceed 0.0045 weight percent for EPA testing.

POLLUTANT EMISSIONS
STANDARDS

GAS / FUEL
CONSUMPTION / ZEV

ON-BOARD
DIAGNOSTIC AND
MONITORING

EMISSIONS STANDARDS

FUELS

EMISSIONS STANDARDS

US - certification unleaded gasoline fuel: E10

Fuel Name	E10	EPA Tier 3	EPA Tier 3	EPA Tier 3	CARB LEV III
Specification		40 CFR 1065.71	40 CFR 1065.71	40 CFR 1065.71	40 CFR 86.113-07
Property	Units	General	Low-temp	High altitude	Regular
Octane	(R+M)/2	87.0 - 88.4°	87.0 - 88.4°	87.0 min.	87.0 - 88.4
Sensitivity	R-M	7.5 min.	7.5 min.	7.5 min.	7.5 min.
DVPE	PSI	8.7 - 9.2	11.2 - 11.8	7.6 - 8.0	6.9 - 7.2
T10	°F	120 - 140	110 - 130	120 - 140	130 - 150
T50	°F	190 - 210	190 - 210	190 - 210	205 - 215
T90	°F	315 - 335	315 - 335	315 - 335	310 - 320
FBP	°F	380 - 420	380 - 240	380 - 420	390 max.
Residue	ml	2.0 max.	2.0 max.	2.0 max.	2.0 Vol % max.
Aromatics	% vol	21.0 - 25.0	21.0 - 25.0	21.0 - 25.0	19.5 - 22.5
Olefins	% mass	4.0 - 10.0	4.0 - 10.0	4.0 - 10.0	4.0 - 6.0
Benzene	% vol				0.6 - 0.8
Lead	g/L	0.0026 max.	0.0026 max.	0.0026 max.	0.0026 max.
Phosphorus	g/L	0.0013 max.	0.0013 max.	0.0013 max.	0.0013 max.
Total Sulfur	mg/kg	8.0 - 11.0	8.0 - 11.0	8.0 - 11.0	8.0 - 11.0
Ethanol	% vol	9.6 - 10.0	9.6 - 10.0	9.6 -1 0.0	9.2 - 10.0
Oxidation Stab.	minutes	1,000 min.	1,000 min.	1,000 min.	1,000 min.

a Octane specifications apply only for testing related to exhaust emissions. For engines or vehicles that require the use of premium fuel, the adjusted specification for antiknock index is a minimum of 91.0 with no maximum.

POLLUTANT EMISSION STANDARDS GAS / FUEL
CONSUMPTION / ZEV

DIAGNOSTIC AND MONITORING EMISSIONS STANDARDS FUEL

EMISSIONS STANDARDS

US - certification diesel fuel

Fuel property	Unit	Federal specifications 86.113-94 2-D	CARB specifications	Test⁵
Cetane Number (natural)	-	40 - 50	47 - 55	ASTM D613
Cetane Index	-	40 - 50	87.0 - 88.4	ASTM D976
Distillation Range	°F (°C)			D-86; 13 CCR section 2282(g)b
Initial Boiling Point	°F (°C)	340 - 400 (171.1 - 204.4)	340 - 420 (171 - 216)	
10% Point	°F (°C)	400 - 460 (204.4 - 237.8)	400 - 490 (204 - 254)	
50% Point	°F (°C)	470 - 540 (243.3 - 282.2)	470 - 540 (243.3 - 282.2) 470 - 560 (243 - 293)	
90% Point	°F (°C)	560 - 630 (293.3 - 332.2)	550 - 610 (288 - 321)	
End Point	°F (°C)	610 - 690 (321.1 - 365.6)	580 - 660 (304 - 349)	
API gravity		32 - 37	33 - 39	ASTM D4052
Total Sulfur	ppm	7 – 15	7 - 15	D-2622; 13 CCR section 2282(g) ^b
Nitrogen Content	ppm	-	100 - 500	13 CCR section 2282(g) ^b
Total Aromatic Hydrocarbons	% vol	27 (min.) ^a	8 - 12	D-1319; 13 CCR section 2282(g) ^b
Polycyclic Aromatic Hydrocarbons	% vol	-	1.4 (max.)	
Flashpoint (min.)	°F (°C)	130 (54.4)	130 (54)	ASTM D93
Viscosity at 40°F (4°C)	mm²/sec.	2.0 - 3.2	2.0 - 4.1	ASTM D445

^a Remainder shall be paraffins, naphtenes and olefins.

b ASTM standards and/or California Tile 13, CCR procedures.

PR OF CHINA

GB 17930-2016 Gasoline for motor vehicles (E0) (VI B)

No.	G	uality indicators		To at weather d
ltem	89	92	95	Test method
Antiknock index (RON + MON)/2, not less than	84	87	90	GB/T 503, GB/T 5487
Lead content / (g/L), not more than		0.005		GB/T 8020
Distillation range:				
10% evaporation temperature / °C, not more than		70		
50% evaporation temperature / °C, not more than	vaporation temperature / °C, not more than		OD/T 0570	
90% evaporation temperature / °C, not more than	190		GB/T 6536	
Final distillation point / °C, not more than	205			
Residue (volume fraction) / %, not more than	2			
Vapor Pressure 1 November to 30 April		45 - 85		GB 8017
Vapor Pressure 1 May to 31 October		40 - 65°		GB 8017
Sulfur content ^b / (mg/kg), not more than	10		SH/T 0689	
Benzene content ^c (volume percentage) / % not more than	0.8		SH/T 0713	
Aromatics content ^d (volume percentage) / % not more than	35		GB/T 30519	
Olefin content ^d (volume percentage) / % not more than		15		GB/T 30519

Guangi soflows this requirement throughout the year, and the districts in Guangdong and Hainan wherein the ethanol gasciller for motor vehicles (EID) is used shall follow this requirement throughout the year.

It may dis follow the requirements in GRIT 1100 SHIT 0253 or ASTM 107039 for determination, where the ethan the ethan of the ethan of

EXHAUST
POLLUTANT EMISSIONS
STANDARDS

GAS / FUEL
CONSUMPTION / ZEV

ON-BOARD
DIAGNOSTIC AND
MONITORING

EVAPORATIVE EMISSIONS STANDARDS

FUELS

through the requirements of SH/T 0713, GB/T 28768, or GB/T 30519 for determination, and the method in SH/T 0693 shall prevail in case of objection.

d It may also follow the requirements of GB/T 11132 and GB/T 28768 for determination, and the method in GB/T 30519 shall prevail in case of objection.

GB 18351-2017 Ethanol Gasoline for motor vehicles (E10)(VI B)

Item	G	Quality indicators	Test method	
item	89 92 9!		95	rest method
Antiknock index (RON + MON)/2, not less than	84	87	90	GB/T 503, GB/T 5487
Distillation range:				
10% evaporation temperature / °C, not more than		70		
50% evaporation temperature / °C, not more than		110		GB/T 6536
90% evaporation temperature / °C, not more than		190	GB/1 6536	
Final distillation point / °C, not more than		205		
Residue (volume fraction) / %, not more than		2		
Vapor Pressure 1 November to 30 April		45 - 85	OD 2017	
Vapor Pressure 1 May to 31 October		40 - 65°		GB 8017
Sulfur content ^b / (mg/kg), not more than		10	SH/T 0689	
Benzene content ^c (volume percentage) / % not more than	0.8			SH/T 0693
Aromatics content ^d (volume percentage) / % not more than	35			GB/T 30519
Olefin content ^d (volume percentage) / % not more than	15			GB/T 30519

a Guangxi follows this requirement throughout the year, and the districts in Guangdong and Hainan wherein the ethanol gasoline for motor vehicles (E10) is used shall follow this requirement throughout the year. bit may also follow the requirements in GB/T 11140, SH/T 0253, or ASTM D7039 for determination, and the method in SH/T 0689 shall prevail in case of objection.

of the requirements of SH/T 0713, GB/T 28768, or GB/T 30519 for determination, and the method in SH/T 0693 shall prevail in case of objection.

⁴ It may also follow the requirements of GB/T 11132 and GB/T 28768 for determination, and the method in GB/T 30519 shall prevail in case of objection.

PR OF CHINA

GB 18047-2017 Compressed natural gas as vehicle fuel

Item	Technical indicator	Test method
Higher Heating Value (MJ/m³)	≥ 31.4	GB/T 11062
Total Sulfur (as sulfur) (mg/m³)	≤ 100	GB/T 11060.4
Hydrogen Sulfide (mg/m³)	≤ 15	GB/T 11060.1
Carbon Dioxide mol:mol/%	≤ 3.0	GB/T 13610
Oxygen mol:mol/%	≤ 0.5	
Water (mg/m³)	In specific geographical areas where vehicles operate, under conditions of pressure not exceeding 25 MPa and ambient temperature not lower than -13°C, the mass concentration of water should not exceed 30 mg/m³	GB/T 17283 GB/T 22634
Dew Point / °C	In specific geographical areas where vehicles operate, under conditions of pressure not exceeding 25 MPa and ambient temperature below -13°C, the dew point should be at least 5°C lower than the lowest ambient temperature.	GB/T 17283 GB/T 22634

The standard reference conditions for gas volume in this standard are 101.325 kPa and 20°C.

PR OF CHINA

M100 methanol fuel for motor vehicles

Serial number	Test item	Test method	GB/T 42416-2023
1	Appearance	GB/T 511-2010	Clear and transparent, no suspended matter or precipitation
2	Methanol content (mass fraction)	GB/T 23510	≥ 99.5%
3	Density (20°C)	GB/T 4472	0.791 - 0.793 g/cm³
4	Boiling range (0°C, 101.3 kPa, within 64.0–65.5°C, including 64.6°C ± 0.1°C)	GB/T 7534	≤ 1.2°C
5	Evaporation residue (mass fraction)	GB/T 6324.2	≤ 0.05%
6	Water content (mass fraction)	GB/T 6283	≤ 0.2%
7	Base number (as KOH)	SH/T 0251	0.003 - 0.030 mg/g
8	Nitrogen content	SH/T 0657	-
9	Organic chlorine content	GB/T 6324.9	≤ 1.0 mg/kg
10	Inorganic chlorine content (as CI ⁻)	GB/T 23510	≤ 1.0 mg/L
11	Sulfur content	GB/T 34100	≤ 1.0 mg/kg
12	Sodium content	GB/T 17476	≤ 2.0 mg/kg
13	Iron content	SH/T 0712	≤ 0.01 g/L
14	Cleanliness (particle distribution)	GB/T 20082	≤ - 16/13 grade
15	Simulated intake valve deposit mass	GB/T 37322	-
16	Lubrication properties wear spot diameter / µm	SH/T 0765-2005 test temperature: 25°C	-

CURRENT

Table 1 requirement for E20 reference fuel for use in positive ignition engines TA and COP tests

Characteristics	Requirements
Density at 15°C, kg/m³	743 to 760
Distillation	
a) Percent evaporated at 70°C (E70°C), percent v/v	34 to 46
b) Percent evaporated at 100°C (E100°C), percent v/v	64 to 72
c) Percent evaporated at 150°C (E150°C), percent v/v, Min.	88 to 95
d) Final Boiling Point, °C, Max.	165 to 195
e) Residue, percent by volume, Max.	2
Research Octane Number (RON), Min.	98
Motor Octane Number (MON), Min.	88
Gumcontent (solvent washed), g/m³, Max.	40
Total Sulfur, mg/kg, Max.	10

ıe	es TA and COP tests	
	Characteristics	Requirements
	Lead Content (as Pb), g/L, Max.	0.005
	Reid vapour pressure at 37.8°C, kPa, Max.	60 to 65
	Benzene content, percent by volume, Max.	1
	Copper strip corrosion (3 h at 50°C)	Class 1
	Water tolerance of gasoline-alcohol blends, temperature for phase separation, °C, Max.	(-) 15
	Induction period, minutes, Min.	480
	Olefin content, percent by volume	6 to 13
	Aromatic content, percent by volume	20 to 30
	Oxygen content, percent by mass	7 to 7.4
	Ethanol content, percent v/v	19 to 20
	Water content, percent by volume, Max.	0.050
	Phosphorus content, g/L, Max.	0.001

Table 2 requirement for B6 to B20 Biodiesel Blend Fuel

Characteristics	Requirements
Density ^a at 15°C, kg/m³	820 - 860
Kinematic viscosity at 40°C (cSt)	2.0 - 4.62
Flash point, Abel (°C) Min.	35
Sulfur ^o (mg/kg), Max.: a) BS III b) BS IV	350 50
Carbon residue (Ramsbottom)° on 10 percent residue, percent by mass), Max.	0.3
Ash content (percent by mass), Max.	0.01
Water, ppm, Max.	260
Cu corrosion, 3 h, Max.: a) BS III at 100°C b) BS IV at 50°C	1
Cetane No ^d , Min.	51

Characteristics	Requirements
Cetane index ^d , Min.	46
PAH, m/m Max.	11
Lubricity, wear scar diameter (wsd 1.4) at 60°C, micron, Max.	460
Acid No°, mg of KOH/gm Max.	0.2
Oxidation stability, at 110°C, h, Min.	20
Distillation, percent recovery at 360°C Min.	95
Biodiesel content, percent, v/v	6 - 20
Pour point', Max.: a) Winter b) Summer	3°C 15°C
Cold filter plugging point (CFPP ¹), Max.: a) Winter b) Summer	6°C 18°C
Total contaminant, mg/kg, Max.	24

Test gasoline fuel

•			
Fuel properties	Unit	Regular Premium	Test method
Lead		Not detected	JIS K2255
Sulfur Content	wt-ppm	10 or less	JIS K2541 - 1,2,6,7
Total Aromatics	% vol	20 - 45	JIS K2536 - 1,2,3
Olefins	% vol	15 - 25	JIS K2536 - 1,2
Benzene	% vol	1.0 or less	JIS K2536 - 2,3,4
Oxygen Content		Not detected	JIS K2536 - 2,4,6
MTBE		Not detected	JIS K2536 - 2,4,5,6
Methanol		Not detected	JIS K2536 - 2,4,5,6
Ethanol		Not detected	JIS K2536 - 2,4,6
Real Gum	mg/100 ml	5 or less	JIS K2261
Kerosene		Not detected	JIS K2536 - 2,4

Fuel properties	Unit	Regular	Premium	Test method
Octane Number				
RON		90 - 92	99 - 101	JIS K2280
MON		80 - 82	86 - 88	
Density	g/cm³	0.720 - 0.740 - 0.734 0.754		JIS K2249
Distillation Properties				
10% Distillation Temperature	K (°C)	318 - 328 (45 - 55)		
50% Distillation Temperature	K (°C)	363 - 373 (90 - 100)		JIS K2254
90% Distillation Temperature	K (°C)	413 - 443 (140 - 170)		
Final Boiling Point	K (°C)	488K (215) or less		
Vapor Pressure	kPa	56-60		JIS K2258

Test diesel fuel

Fuel properties or substance name	Unit		Test method
Sulfur Content	wt-ppm	10 or less	JIS K2541 - 1,2,6,7
Cetane Index		53 - 57	JIS K2280
Density	g/cm³	0.824 - 0.840	JIS K2249
Distillation Properties			
50% Distillation Temperature	K (°C)	528 - 568 (255 - 295)	JIS K2254
90% Distillation Temperature	K (°C)	573 - 618 (300 - 345)	JIS K2254
Final Boiling Point	K (°C)	643 (370) or less	
Total Aromatics	% vol	25 or less	JPI HPLC
Polycyclic Aromatic	% vol	5.0	JPI HPLC
Flash Point	K (°C)	331 (58) or higher	JIS K2265 - 3
Kinematic Viscosity (Test temperature 303K (30°C))	mm²/s	3.0 to 4.5	JIS K2283

FOR OVER 100 YEARS, WE PIONEER NEW DIRECTIONS IN FUELS SYSTEMS, ELECTRICAL SYSTEMS, AND AFTERMARKET COMPONENTS.

EUROPEAN UNION - EURO 5 AND EURO 5+

Euro 5 limit values and test conditions

Requirements were set in Regulation (EU) 168/2013 amended by 134/2014, 2019/129 and 2020/1694.

Type I test limits, tailpipe emissions after cold start and applicable test cycle, valid from 1 January 2020 (NT) and 1 January 2021 (AT)

Vehicle		Propulsion		Mass of (mg/km) Implementation dates				ation dates		
category	Vehicle category name	class	со	тнс	NHMC	NOx	PM	Test cycle	New types	All new vehicles
L1e-A	Powered cycle	PI / CI / Hybrid	500	100	68	60	4.5⁵	Revised WMTC	1 Jan 2020	1 Jan 2021
L1e-B-L7e	All other L-category vehicles	PI / PI Hybrid	1,000	100	68	60	4.5b	Revised WMTC	1 Jan 2020	1 Jan 2021
Lie-B-L/e	All other L-category verlicles	CI / CI Hybrid	500	100	68	90	4.5	Revised WMTC 1 Jan 2020		1 3dr1 2021

 $^{^{\}rm o}$ Four-year delay for subtypes L6e-B, L2e-U, L3e-AxT and L3e-AxE (Euro 5+, see below).

Euro 5+ Regulation (EU) 2019/139 amending Regulation (EU) No. 168/2013

Amendments to the OBD II requirements for certain vehicle types.

Four-year delay to implementation dates for certain vehicle types as shown in the above table.

EXHAUS I POLLUTANT EMISSIONS STANDARDS

^b Applicable to petrol direct injection (DI) engines only.

EUROPE

EUROPEAN UNION - EURO 5

Euro 5 test type IV, evaporative emissions for vehicles with PI engines

Veh. cat.º	Vehicle category name	Permeation tes	st ^{d,f} (mg/m²/day)	Mass of THC in SHED test (mg/test)
veri. cat	verlicle category flame	Fuel tank	Fuel tubing	Vehicle
L1e-A	Powered cycle			
L1e-B	Two-wheel moped	1,500	15,000	
L2e	Three-wheel moped			
L3e L4e	Two-wheel motorcycle with and without side-car	-	-	
L5e-A	Tricycle	-	-	
L5e-B	Commercial tricycle	1,500	15,000	1,500
L6e-A	Light on-road quad	-	-	
L6e-B	Light quadrimobile	1,500	15,000	
L7e-A	Heavy on-road quad	-	-	
L7e-B	All-terrain quad	1,500	JE 000	
L7e-C	Heavy quadrimobile	1,500	15,000	

[°] For (sub)-categories L1e-A, L1e-B, L2e, L5e-B, L6e-B, L7e-B and L7e-C, applicable test type to be determined pending the results of a study references in Annex IV of Regulation EU 168/2013. Each subcategory will either be made subject to permeation testing or SHED testing.

EXHAUST
POLLUTANT EMISSIONS
STANDARDS

^d Permeation test procedure set out in appendix 2 to Annex V of Rea. (EU) No. 134.2014.

Only the base two-wheel motorcycle to which the side-car is fitted must meet the appropriate emission limits.

f Empty field means no limit defined in Euro 5 regulation.

EUROPEAN UNION - EURO 5

Furo 5° test type V pollution of emission control devices, minimum distance accumulation^b

Vehicle category	Vehicle category name	Durability mileage (km)	
L1e-A	Powered cycle	5,500	
L3e-Axt ^c	Two-wheel trial motorcycle	5,500	
L1e-B	Two-wheel moped		
L2e	Three-wheel moped		
L3e-AxE°	Two-wheel Enduro motorcycle	11,000	
L6e-A	Light on-road quad		
L7e-B	Heavy all-terrain quad		
L3e L4e	Two-wheel motorcycle with and without side-car (V _{max} < 130 km/h)		
L5e	Tricycle	20,000	
L6e-B	Light quadrimobile		
L7e-C	Heavy quadrimobile		
L3e L4e	Two-wheel motorcycle with and without sidecar (V _{max} ≥ 130 km/h)	35,000	
L7e-A			

a Also applicable to Euro 4.

b Article 23(3a) full mileage accumulation, (3b) partial distance accumulation and (3c) mathematical application of deterioration factors set out in Reg. (EU) No. 168/2013.

[°]x = 1, 2 or 3 (different sub-categories).

EUROPEAN UNION - EURO 2 AND 3

Furo 2 and 3 limit values and text conditions

Requirements are defined in framework Dir. 2002/24/EC and Dir. 97/24/EC (repealed on 31 December 2015). Applicable vehicle categories shown in tables.

Euro 2 and 3 type I test limits, tailpipe emissions after cold start

Vehicle	Vehicle category name	Classification	Euro		Emissions	(mg/km)		Test cycle	Applicable	
category	venicle category name	(cm³)	level	СО	HC	NOx	HC+NOx	rest cycle	as of	
Lle	Two-wheel moped	< 50	3°	1,000	-	-	1,200	ECE R47	2000	
L3e	Two-wheel motorcycle	< 150	3	2,000	800	150	-	ECE R40, UDC ^b	2006	
LSe	I wo-wneer motorcycle	≥ 150	3	2,000	300	150	-	ECE R40, UDC+EUDC°	2006	
Positive ignition										
L2e	Three-wheel mopeds	< 50	3°							
L5e	Tricycles	≥ 50	2	7,000	1,500	400	400 -	L2+L6: ECE R47	2003	
L6e	Light quadricycles	< 50	2+3°	7,000	1,500	400		L5+L7 UDC		
L7e	Heavy quadricyles	≥ 50	2							
				Compre	ession ignition					
L2e	Three-wheel mopeds	< 50	2							
L5e	Tricycles	≥ 50	2	2.000	2.000 1.000		_	L2+L6: ECE R47	2003	
L6e	Light quadricycles	< 50	2	2,000	1,000	650	_	L5+L7 UDC+EUDC	2003	
L7e	Heavy quadricyles	≥ 50	2							

[°] Sampling start t = 0, weighting 30% cold / 70% warm. Emissions measured for all six modes — sampling start at t = 0. Emissions measured from all modes — sampling start at t = 0.

EXHAUST
POLLUTANT EMISSIONS
STANDARDS

CO₂ / GREENHOUSE Y GAS / FUEL CONSUMPTION / ZEV ON-BOARD IAGNOSTIC AND MONITORING EVAPORATIVE EMISSIONS STANDARDS

FUELS

Furo 4 limit values and test conditions

Revised type-approval package Euro 4 and Euro 5 steps: Reg. (EU) No. 168/2013 and Reg. (EU) No. 134/2014. Applicable vehicle categories shown in tables. Euro 4 Type I test limits, tailpipe emissions after cold start, and applicable test type, valid from 1 January 2016 (NT) and 1 January 2017 (AT).

Vehicle				Mass (ı	mg/km)			Implement	ation dates
category	Vehicle category name	Propulsion class	со	нс	NOx	PM	Test cycle	New types	All new vehicles
L1e-A	Powered cycle	PI/CI/Hybrid	560	100	70	-	ECE R47	1 Jan 2017	1 Jan 2018
L1e-B	Two-wheel moped	PI/CI/Hybrid	1,000	630	170	-	ECE R47	1 Jan 2017	1 Jan 2018
L2e	Three-wheel moped	PI/CI/Hybrid	1,900	730	170	-	ECE R47	1 Jan 2017	1 Jan 2018
L3e L4e°	Two-wheel motorcycles with and without side-car	PI/PI Hybrid V _{max} < 130 km/h	1,140	380	70	-	WMTC Stage 2		
L5e-A	Tricycle	PI/PI Hybrid V _{max} ≥ 130 km/h	1,140	170	90	-	WMTC Stage 2	1 Jan 2016	1 Jan 2017
L7e-A	Heavy on-road quad	CI/CI/Hybrid	1,000	100	300	80 ^b	WMTC Stage 2		
L5e-B	Commercial tricycle	PI/PI/Hybrid	2,000	550	250	-	ECE R40	1 Jan 2016	1 Jan 2017
rae-B	Commercial tricycle	CI/CI/Hybrid	1,000	100	0 550 80 ^b ECE R40		ECE R40	1 Jan 2016 1 Jan 2017	
L6e-A	Light on-road quad	PI/PI Hybrid	1,900	730	170	-	ECE R47	1 Jan 2017	1 Jan 2018
L6e-B	Light quadrimobile	CI/CI Hybrid	1,000	100 550 80 ECE R47		1 Jan 2017	1 Jan 2018		
L7e-B	Heavy all terrain quad	PI/PI Hybrid	2,000	550	250	-	ECE R40	1 Jan 2016	1 Jan 2017
L7e-C	Heavy quadrimobile	CI/CI Hybrid	1,000	100	550	80	ECE R40	1 Jun 2016	1 Jun 2017

Only the base two-wheel motorcycle to which the side-car is fitted must meet the appropriate emission limits. Cl only, also if for example, a hybrid concept includes a Cl engine.

EXHAUST
POLLUTANT EMISSIONS
STANDARDS

GAS / FUEL
CONSUMPTION / ZEV

ON-BOARD DIAGNOSTIC AND MONITORING EVAPORATIVE EMISSIONS STANDARDS

FUELS

EUROPEAN UNION - EURO 4

Euro 4 test type IV, evaporative emissions for vehicles with PI engines

Veh. cat.ª	Vehicle category name	Mass of THC (mg/test)	Test cycle	
L3e L4e	Two-wheel motorcycle with and without side car			
L5e-A	Tricycle	2,000	SHED	
L6e-A	Light on-road quad			
L7e-A	Heavy on-road quad			

^a Vehicle Cat. L1e, L2e, L5e-B, L6e-B, L7e-B and L7e-C equipped with a plastic fuel storage tank are subject to the permeability test and limits set out in appendix 1 to Annex V of Reg. (EU) No. 134,2014.

b SHED test procedure set out in appendix 3 to Annex V of Reg. (EU) No. 134.2014. For rapid ageing of the carbon canister an additive deterioration factor applies: 300 ma/test.

EUROPEAN UNION - TESTING FRAMEWORK

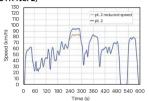
Furo 4 and 5 framework

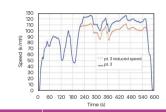
Revised type-approval package Euro 4 and Euro 5 steps: Reg. (EU) No. 168/2013 and Reg. (EU) No. 134/2014. Applicable vehicle categories shown in tables. The following table summarises the required tests.

Test Type	Description	Euro 4 step	Euro 5 step			
1	Tailpipe emission after cold start	Annex VI(A1)	Annex VI(A2)			
	- PI or Hybrid equipped with PI: emissions at idling and increased idling speed	Recasted Directive 2009/40/EC				
	- CI or Hybrid with CI engine: free acceleration test					
III	Emissions of crankcase gases	Zero emission, closed crankcase. Crankcase emissions shall not be discharged directly into the ambient atmosphere from any vehicle throughout its useful life				
IV	Evaporative emissions	Annex VI(C1)	Annex VI(C2)			
V	Durability of pollution control devices	Annexes VI(A), VII(A), VII(B), Euro 4 limits and test procedures	Annexes VI(A), VII(A), VII(B), Euro 5 limits and test procedures			
VI	A test-type VI has not been attributed	N	/A			
VII	Energy efficiency: CO₂ emissions, fuel and/or electric energy consumption and electric range	Measurement and reporting, no limit value for type-approval purposes				
VIII	OBD environment tests	OBD stage I, Annex VI(B1)	OBD stage II, Annex VI(B2)			
IX	Sound level	Annex VI(D), Euro 4 limits and procedures Annex VI(D), Euro 5 limits and procedures				

EXHAUST
POLLUTANT EMISSIONS
STANDARDS

CO₂ / GREENHOUSE GAS / FUEL CONSUMPTION / ZEV ON-BOARD NAGNOSTIC AND MONITORING

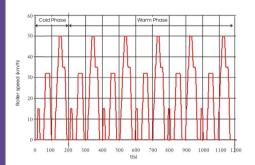

EVAPORATIVE EMISSIONS STANDARDS FUELS



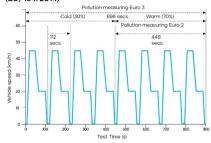
EUROPEAN UNION - EMISSIONS TEST CYCLES

World Motorcycle Test Cycle (WMTC, UN GTR No. 2)

L-category vehicle	class and subclass	Definition (Engine displacement D and maximum speed V_{max})	Applicable parts of the WMTC as specified in Appendix 6		
Class 1		$D < 150 \text{ cm}^3 \text{ and } V_{\text{max}} < 100 \text{ km/h}$	Part 1, reduced vehicle speed in cold condition, followed by part 1, reduced vehicle speed in warm condition		
Class 2 Sub-class 2-1: D		D < 150 cm ³ and 100 km/h ≤ V_{max} < 115 km/h or D ≥ 150 cm ³ and V_{max} < 115 km/h	Part 1, reduced vehicle speed in cold condition, followed by part 2, reduced vehicle speed in warm condition		
	Sub-class 2-2:	115 km/h \leq V _{max} $<$ 130 km/h	Part 1, in cold condition, followed by part 2, in warm condition		
Class 3	Sub-class 3-1:	130 ≤ V _{max} < 140 km/h	Part 1, in cold condition, followed by part 2, in warm condition, followed by part 3, reduced vehicle speed in warm condition		
	Sub-class 3-2:	D > 1,500 cm³ or V _{max} ≥ 140 km/h	Part 1, in cold condition, followed by part 2, in warm condition, followed by part 3, in warm condition		


EXHAUST POLLUTANT EMISSIONS STANDARDS GAS / FUEL
CONSUMPTION / ZEV

ON-BOARD DIAGNOSTIC AND MONITORING VAPORATIVE EMISSIONS STANDARDS FUELS



EUROPEAN UNION - EMISSIONS TEST CYCLES

UNECE R40-based cycle (Motorcycles - Reg. (EU) 134/2014)

UNECE R47-based cycle (mopeds - Dir. 2013/60/EU and Reg. (EU) 134/2014)

EU has not acceded R47, which is therefore not accepted for whole vehicle type-approval.

Set out in Dir 2013/60/EU and 97/24/EC (until 31 December 2017) and set out in Reg. (EU) No. 134/2014 (voluntary after 11 September 2014, obligatory after 1 January 2018), NB the EU has not acceded to UN Rea, No 47 and which is therefore not accepted for whole vehicle type approval of mopeds.

I-CATEGORY **EMISSIONS** STANDARDS

212

LO SEDERAL AND CALIFORNIA - MOTORCYCLE STANDARDS

US Federal and California motorcycle limits

EPA adopted California standards in 40 CFR 86.410-2006

- Motorcycles tested to FTP 75 Schedule^a
- No crankcase emissions allowed
- Evaporative Emissions apply from MY 2008^b and permeation emissions must not exceed 1.5 a/m²/day for tanks and 15 a/m²/day for fuel lines

Limit values (a/km)

- Regulations are fuel neutral
- · Banking and early introduction credits available
- · Three-wheel vehicles included if they meet the On-Highway Motorcycle criteria. Mopeds and scooters are covered under Non-Road Recreational standards

CARB has started rulemaking activities for on-road motorcycles with the aim to introduce standards aligned to Euro 5.

Year ^c	Class	Diam (an)	Tier	нс	co	HC+	Useful life		
Year*	Ciass	Disp. (cc)	Her	corp. ave	CO	corp. ave	max	(years / km)	
	I-A	0-49	Tier 1	1.0	12	1.4 ^d	5.0	5 / 6,000	
2006+	I-B	50-169	Tier 1	1.0	12	1.4ª	5.0	5 / 12,000	
	II	170-279	Tier 1	1.0	12	1.4 ^d	5.0	5 / 18,000	
2006-2009	III	≥ 280	Tier 1	-	12	1.4	5.0	5 / 30,000	
2010+	III	≥ 280	Tier 2	-	12	0.8	2.5	5 / 30,000	

a Modified for motorcycles in Class I between 164 and 332 seconds.

d Optional

° Two years earlier implementation for California

b 40 CFR 105.110 Evaporative emission standards or 40 CFR 1051.245 design based.

PR OF CHINA - STAGE IV STANDARD

Limit values for the Stage IV standards

	Application	Vehicle	Vehicle class	Engine size	Top vehicle		Emissi	ion limits	(g/km)		Driving	Durability	OBD
	date		veriicie ciass	V (cc)	speed V _{max} (km/h)	HC	NOx	co	HC+NOx	PM	cycle	(km)	requirement
			Mopeds	≤ 50	V _{max} ≤ 50	0.63	0.17	1	-	-	ECE R47	11,000	
			_	50 < V < 150	V _{max} ≤ 50						WMTCI		Stage I
			'	V < 150	50 < V _{max} < 100						VVIVITCT		
Obda in a		2 Wheels		V < 150	100 ≤ V _{max} < 115	0.38	0.07	1.14	-	-	WMTC II-1	20,000	
China Stage IV		z wrieeis	II	V ≥ 150	V _{max} < 115						VVIVITO II-1		
	2018			V ≤ 1,500	115 ≤ V _{max} < 130						WMTC II-2		
				V ≤ 1,500	$130 \le V_{max} < 140$	0.17	0.09	0.09 1.14	_		WMTC III-1	35,000	
			""	V > 1,500 o	r V _{max} ≥ 140	0.17	0.09	1.14	_		WMTC III-2	35,000	
		3 Wheels	Mopeds	≤ 50	V _{max} ≤ 50	0.73	0.17	1.9	-	-	ECE R47	11,000	
			PI engine	V > 50 or	' > 50 or V _{max} > 50		0.25	2	2 -	-	ECE R40	20,000	
			CI engine	V > 50 or	V _{max} > 50	-	0.39	0.74	0.46	0.06	ECE R40	20,000	

*

PR OF CHINA - OVERVIEW OF STANDARDS

Implementation dates of China L-category vehicle standards

	Stage	Standard	Implementation date			
	stage	Standard	Type approval	All sales & registrations		
	Channa I		Jan 2003	July 2003 (MCs)		
	Stage I	GB 14622-2002 (MCs)	Jan 2003	Jan 2004 (Mopeds)		
China	Stage II	GB 18176-2002 (Mopeds)	Jan 2004 (MCs)	Jan 2005 (MCs)		
	Stage II		Jan 2005 (Mopeds)	Jan 2006 (Mopeds)		
	Stage III	GB 14622-2007 (MCs) GB 18176-2007 (Mopeds)	July 2008	July 2009°		
	Stage IV	GB 14622-2016 (MCs) GB 18176-2016 (Mopeds)	July 2018	July 2019		

^aThis is the original implementation date; actual implementation date extended by 1 year.

PR OF CHINA - STAGE III STANDARD

Limit values for the Stage III standards

	Application date	Description	Engine size	HC (g/km)	NOx (g/km)	HC+NOx (g/km)	CO (g/km)	Driving cycle	Durability	Cold start			
		2W with Four-Stroke Engine	< 50 cc (Moped)	-	-	1.2	1	ECE R47	10,000 km				
			with Four-Stroke			50-150 cc	0.8	0.15	-	2	ECE R40		
				≥ 150 cc	0.3	0.15		2	ECE R40	18,000 km 30,000 km			
China				2 ISO CC 0.3 0.IS	0.15			+EUDC					
Stage III (cont.)		2008 3W with Two-Stroke Engine	< 50 cc (Moped)	-	-	1.2	3.5	ECE R47	10,000 km				
(COITE.)	2008		≥ 50 cc	1	0.25	-	4	ECE R40	12,000 km 18,000 km 30,000 km	Yes			
		3W with Four-Stroke Engine	< 50 cc (Moped)	-	-	1.2	3.5	ECE R47	10,000 km				
			≥ 50 cc	1	0.25	-	4	ECE R40 12,000 km 18,000 km 30,000 km					

INDIA BS VI LIMITS AND TEST CONDITIONS

Bharat Stage-VI (BS VI) standards for 2 wheeler vehicle models as per GSR 889(E) dated 16 September 2016

Limit Values for 2 wheelers fitted with PI & CI engines (from April 2020)

Voh	icle		BS VI emission norms											
ven	licie	CO mg/km	HC mg/km	NOx mg/km	NMHC mg/km	PM mg/km	Durability mileage (km) Type V	EVAP mg/test	OBD					
	1 & 2-1	1,000	100	100 60 68		4.5°	20,000							
PI Vehicles	2-2	1,000	100	60	68	4.5°	1,500	1,500	Stage I & Stage II°					
	3-1 & 3-2	1,000	100	60	68	4.5°	35,000	1 1						
	All	500	100	90	68	4.5°	35,000	-						
CI Vehicles	DF (for all classes)	1.3	1.3 (SI) 1.1 (CI)	1.3 (SI) 1.1 (CI)	1.3 (SI) 1.1 (CI)	1.0 (CI)	-	300b	-					

Mass Emission Standards (Bharat Stage VI) for 2 wheelers with Spark Ignition (PI) engines with cc \leq 50 and V $_{\rm max}$ \leq 50 km/hr

Pollutan	t TA=COP no mg/km		
co	500	1.2	
HC	350	1.2	IDC as per AIS 137
NOx	150	1.2	as per Als 107

^a Applicable to gasoline direct injection (DI) engines only.

Fixed DF of 300 mg/test shall be added to SHED test results. Alternative to fixed DF, manufacture may opt for ageing of evaporative emission control devices as per procedure specified in AlS 137 and as amended time to time.

OBD stage II will be applicable from 1 April 2023.

CURRENT

INDIA BS VI LIMITS AND TEST CONDITIONS

Vehicle class descriptions and test cycles for BS VI

Standard	Description Class		Definition	Test cycle	
BS VI	2W vehicle classification and testing requirements	Class 1	$50 < D < 150$ cc, $V_{max} \le 50$ km/h or D < 150 cc, $50 < V_{max} < 100$ km/h	Part 1 reduced speed cold (0.5) + Part 1 reduced speed hot (0.5)	
		Class 2-1	D < 150 cc, 100 ≤ V_{max} < 115 km/h or D ≥ 150 cc, V_{max} < 115 km/h	Part 1 reduced speed cold (0.5) + Part 1 reduced speed hot (0.5)	
		Class 2-2 $115 \le V_{max} < 130 \text{ km/h}$		Part 1 cold (0.3) + Part 2 hot (0.7)	
		Class 3-1	130 < V _{max} < 140 km/h	Part 1 cold (0.25) + Part 2 hot (0.5)	
		Class 5-1	150 < V _{max} < 140 km/n	+ Part 3 reduced speed (0.25)	
		Class 3-2	V _{max} ≥ 140 km/h	Part 1 cold (0.25) + Part 2 hot (0.5) + Part 3 (0.25)	

D - engine displacement: V_{mx} - maximum design speed. WMTC phase sequence, Values in square brackets are weighting factors

Table of historical limit values (g/km)

		Test mode	Unit	со	HC	NMHC	NOx	PM ^a
	Bicycle with engine (≤ 50cc)			2.0	0.5	-	0.15	-
2006/	Mini motorcycle (≤ 125cc)	2 wheel cold	g/km	2.0	0.3		0.15	
2007	Small motorcycle (≤ 250cc)	start mode		2.0	0.3		0.15	
	Medium motorcycle (> 250cc)			2.0 (2.7) ^b	0.40 (0.3)		0.20 (0.15)	
	Bicycle with engine (≤ 50cc)			2.2	0.45		0.16	
2012	Mini motorcycle (≤ 125cc)	WMTC	g/km	2.62	0.27	_	0.21	-
2012	Small motorcycle (≤ 250cc)	mode		2.62	0.27		0.21	
	Medium motorcycle > 250cc)			2.62 (3.48)	0.27 (0.36)		0.21 (0.28)	
	Class 1: 50cc to 150cc and V_{max} < 50 km/h or < 150cc and V_{max} between 50 and 100 km/h		g/km	1.14	0.3	-	0.07	-
2018	Class 2: < 150cc and V_{max} between 100 and 130 km/h or > 150cc and V_{max} < 130 km/h	WMTC mode		1.14 (1.58)	0.2 (0.24)		0.07 (0.10)	
	Class 3: V _{max} > 130 km/h			1.14 (1.58)	0.17 (0.21)		0.09 (0.14)	
	Class 1: 50cc to 150cc and V_{max} < 50 km/h or < 150cc and V_{max} between 50 and 100 km/h		g/km	1.00 (1.33)	0.10 (0.13)	0.068 (0.088)	0.06 (0.096)	0.0045 (0.0063)
2020	Class 2: < 150cc and V_{max} between 100 and 130 km/h or > 150cc and V_{max} < 130 km/h	WMTC mode		1.00 (1.33)	0.10 (0.13)	0.068 (0.089)	0.06 (0.096)	0.0045 (0.0063)
	Class 3: V _{max} > 130 km/h			1.00 (1.33)	0.10 (0.13)	0.068 (0.090)	0.06 (0.096)	0.0045 (0.0063)

^aPM limit is applied to gasoline direct injection engines only. ^b Values are for type approval. Values in () are for other purpose (prototype, parallel imported bike, etc.).

SOUTH KOREA

Table of historical limit values (g/km)

Standard	Application date	Description	Test cycle	CO (g/km)	HC (g/km)	NOx (g/km)	HC+NOx (g/km)	Evap (g/test)
Euro 2		All 3W	CVS-40	7	1.5	0.4	-	
	7	2W < 150 cc PI	UDC Cold	2	0.8	0.15	-	
Euro 3	Jan 2008	2W > 150 cc PI	ECE40 + EUDC		0.3			-
		2W < 45 km/h	CVS-47	1	-	-	1.2	
Euro 4	Jan 2017	2W ≤ 50 cc Pl & V _{max} < 45 km/h	ECE R47	1	0.63	0.17	-	-
		2W ≤ 50 cc PI & V _{max} 45 km/h		1.14	0.38	0.07		
		2W > 50 cc Pl & V _{max} < 130 km/h						2.0, applied only for vehicles with V _{max} ≥ 130 km/h
		2W > 50 cc Pl & V _{max} 130 km/h	WMTC		0.17			
Euro 5	7			CO (g/km)	THC (g/km)	NMHC (g/km)	NOx (g/km)	Evap (g/test)
Euro 5 Jan 2020		WMTC	1	0.1	0.68	0.6	1.5	

EXHAUST
POLLUTANT EMISSIONS
STANDARDS

GAS / FUEL
CONSUMPTION / ZEV

ON-BOARD
DIAGNOSTIC AND
MONITORING

EVAPORATIVE EMISSIONS STANDARDS

FUELS

Promot 5	Year	Models	Emissions (mg/km)							
			со	THC	NMHC	NOx	PM	нсно	CO ₂	
	Jan 2023	New models	1,000	100	68	60	4.5	20 or 30	Declare	
	Jan 2025	All models	1,000	100	68	60	4.5	20	Declare	
	Year	Models	Idle CO ^a	ldle CO° 2000 RPM	Idle HC⁵	Annual Prod: < 10,000 units - CO, NMHC, NOx DF 1.3 and MP DF 1.0				
Promot 5	Jan 2023	New models	5,000	3,000	50	DF as 493, Brazil Resolution OBD M ₁ - Jan 2023 - New models - EU n° 134/2014 and EU n°44/2014				
	Jan 2025	All models	5,000	3,000	50	OBD M_2 – Jan 2025 – All models – EU n° 134/2014 and EU n°44/2014				

^a Dilution Factor < 2.5.

^b Limit in Hexane (C6).

OTHER AREAS OF THE WORLD

	Standard Description Class		Class	Definition	Test cycle				
Chile	2012: LA-4 - Tier 2, ECE40+EUDC - Euro 3, WMTC - Euro 3								
Indonesia		Motorcycle emissions legislation is equivalent to Euro 3							
Singapore	Singapore Government's National Environment Agency is responsible for emissions legislation and air quality. Euro 4 emissions are currently in place for 2W and 3W vehicles								
Thailand		Level 7 standards, equivalent to Euro 4, are currently in force							
Vietnam	Fron	From 2017 motorcycle emissions standards equivalent to Euro 3 are applicable, nationally, replacing the Euro 2 level standards. They follow EU regulations							

→ PHINIA

OCTOBER 2025

WORLDWIDE EMISSIONS STANDARDS

LIGHT-DUTY VEHICLES

PHINIA is pleased to offer Worldwide Emissions Standards booklets free of charge to our customers, partners and correspondents.

For additional worldwide emissions regulation information, please contact our emissions experts: connect@phinia.com

An electronic version of this booklet is also available on our website.

Acknowledgements

Thanks are due to:
PHINIA-internal: diligent reviews by NW and PL,
and expert contributions from our regional teams
External reviewers: Ingevity and ACEM.

i